Advertisement

Gravitation and Cosmology

, Volume 14, Issue 3, pp 235–240 | Cite as

Electric S-brane solutions corresponding to rank-2 Lie algebras: Acceleration and small variation of G

  • V. D. IvashchukEmail author
  • S. A. Kononogov
  • V. N. Melnikov
Article

Abstract

Electric S-brane solutions with two non-composite electric branes and a set of l scalar fields are considered. The intersection rules for branes correspond to Lie algebras A 2, C 2 and G 2. The solutions contain five factor spaces. One of them, M 0, is interpreted as our 3-dimensional space. It is shown that there exists a time interval where accelerated expansion of our 3-dimensional space is compatible with a small enough variation of the effective gravitational constant G(τ). This interval contains τ 0, a point of minimum of the function G(τ). A special solution with two phantom scalar fields is analyzed, and it is shown that, in the vicinity of the point τ 0, the time variation of G(τ) (calculated in the linear approximation) decreases in the sequence of Lie algebras A 2, C 2 and G 2.

PACS numbers

04.50.+h 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Melnikov, Multidimensional Classical and Quantum Cosmology and Gravitation. Exact Solutions and Variations of Constants (CBPF-NF-051/93, Rio de Janeiro, 1993); V. N. Melnikov, in: Cosmology and Gravitation (Ed. M. Novello, Editions Frontieres, Singapore, 1994), p. 147.Google Scholar
  2. 2.
    V. N. Melnikov, Multidimensional Cosmology and Gravitation (CBPF-MO-002/95, Rio de Janeiro, 1995), 210 p; V. N. Melnikov, In: Cosmology and Gravitation. II (Ed. M. Novello, Editions Frontieres, Singapore, 1996), p. 465.Google Scholar
  3. 3.
    V. N. Melnikov, Exact Solutions in Multidimensional Gravity and Cosmology III (CBPF-MO-03/02, Rio de Janeiro, 2002), p. 297.Google Scholar
  4. 4.
    V. D. Ivashchuk and V. N. Melnikov, Nuovo Cim. B 102, 131 (1988).CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    K. A. Bronnikov, V. D. Ivashchuk, and V. N. Melnikov, Nuovo Cim. B 102, 209 (1988).CrossRefADSGoogle Scholar
  6. 6.
    V. N. Melnikov, Gravity as a Key Problem of the Millennium (Proc. 2000 NASA/JPL Conference on Fundamental Physics in Microgravity, NASA Document D-21522, 2001, Solvang, CA, USA), p. 4.1.Google Scholar
  7. 7.
    V. N. Melnikov. Gravity and Cosmology as Key Problems of the Millennium. In: Albert Einstein Century Int. Conf. (Eds. J.-M. Alimi and A. Fuzfa, AIP Conf. Proc. Melville-NY, 2006), vol. 861, p. 109.Google Scholar
  8. 8.
    V. N. Melnikov, Variations of Constants as a Test of Gravity, Cosmology and Unified Models, Grav. Cosmol. 13, 81 (2007).zbMATHADSGoogle Scholar
  9. 9.
    V. D. Ivashchuk and V. N. Melnikov, Problems of G and Multidimensional Models. In: Proc. JGRG11, Eds. J. Koga et al., Waseda Univ., Tokyo, 2002, p. 405.Google Scholar
  10. 10.
    H. Dehnen, V. D. Ivashchuk, S. A. Kononogov, and V. N. Melnikov, On Time Variation of G in Multidimensional Models with Two Curvatures, Grav. Cosmol. 11, 340 (2005).zbMATHADSGoogle Scholar
  11. 11.
    V. Baukh and A. Zhuk, Sp-brane Accelerating Cosmologies, Phys. Rev D 73, 104016 (2006).Google Scholar
  12. 12.
    A. I. Zhuk, Conventional Cosmology from Multidimensional Models, hep-th/0609126.Google Scholar
  13. 13.
    J.-M. Alimi, V. D. Ivashchuk, S. A. Kononogov, and V. N. Melnikov, Multidimensional Cosmology with Anisotropic Fluid: Acceleration and Variation of G, Grav. Cosmol. 12, 173 (2006); grqc/0611015.zbMATHADSGoogle Scholar
  14. 14.
    V. D. Ivashchuk, S. A. Kononogov, V. N. Melnikov, and M. Novello, Non-Singular Solutions in Multidimensional Cosmology with Perfect Fluid: Acceleration and Variation of G, Grav. Cosmol. 12, 273 (2006); hep-th/0610167.zbMATHMathSciNetADSGoogle Scholar
  15. 15.
    S. B. Fadeev and V. D. Ivashchuk, 5-dimensional Solution with Acceleration and Small Variation of G, In: Proc. of the Russian Summer Schoolseminar Modern Theoretical Problems of Gravitation and Cosmology, September 9–16, 2007, TSHPU, Kazan-Yalchik, Russia, p. 4; arXiv: 0706.3988.Google Scholar
  16. 16.
    J.-M. Alimi, V. D. Ivashchuk, and V. N. Melnikov, An S-brane Solution with Acceleration and Small Enough Variation of G, Grav. Cosmol. 13(2(50)), 137 (2007); arXiv: 0711.3770.zbMATHMathSciNetADSGoogle Scholar
  17. 17.
    V. R. Gavrilov, V. D. Ivashchuk, and V. N. Melnikov, Multidimensional Integrable Vacuum Cosmology with Two Curvatures, Class. Quantum Grav. 13, 3039 (1996).zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    A. G. Riess et al, Astron. J. 116, 1009 (1998).CrossRefADSGoogle Scholar
  19. 19.
    S. Perlmutter et al, Astroph. J. 517, 565 (1999).CrossRefADSGoogle Scholar
  20. 20.
    R. Hellings, Phys. Rev. Lett. 51, 1609 (1983).CrossRefADSGoogle Scholar
  21. 21.
    J. O. Dickey et al, Science 265, 482 (1994).CrossRefADSGoogle Scholar
  22. 22.
    V. D. Ivashchuk and V. N. Melnikov, Multidimensional Classical and Quantum Cosmology with Intersecting p-branes, J. Math. Phys. 39, 2866 (1998); hep-th/9708157.zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    V. D. Ivashchuk and V. N. Melnikov, Exact Solutions in Multidimensional Gravity with Antisymmetric Forms, Topical Review, Class. Quantum Grav. 18, R82 (2001); hep-th/0110274.MathSciNetGoogle Scholar
  24. 24.
    V. D. Ivashchuk and V. N. Melnikov, Intersecting p-Brane Solutions in Multidimensional Gravity and M-theory, Grav. Cosmol. 2, 297 (1996); hepth/9612089.zbMATHGoogle Scholar
  25. 25.
    V. D. Ivashchuk and V. N. Melnikov, Sigma-model for the Generalized Composite p-Branes, Class. Quantum Grav. 14, 3001 (1997); Erratum: ibid. 15, 3941 (1998); hep-th/9705036.zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    I.S. Goncharenko, V. D. Ivashchuk, and V. N. Melnikov, Fluxbrane and S-brane Solutions with Polynomials Related to Rank-2 Lie Algebras, Grav. Cosmol. 13, 262 (2007); math-ph/0612079.zbMATHMathSciNetADSGoogle Scholar
  27. 27.
    V. D. Ivashchuk, Composite Fluxbranes with General Intersections, Class. Quantum Grav. 19, 3033 (2002); hep-th/0202022.zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    V. D. Ivashchuk, Composite S-brane Solutions Related to Toda-type Systems, Class. Quantum Grav. 20, 261 (2003); hep-th/0208101.zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. D. Ivashchuk
    • 1
    • 2
    Email author
  • S. A. Kononogov
    • 1
  • V. N. Melnikov
    • 1
    • 2
  1. 1.Center for Gravitation and Fundam. MetrologyVNIIMSMoscowRussia
  2. 2.Institute of Gravitation and CosmologyPeoples’ Friendship University of RussiaMoscowRussia

Personalised recommendations