Advertisement

Gravitation and Cosmology

, Volume 14, Issue 3, pp 213–225 | Cite as

Evolution of a Kerr-Newman black hole in a dark energy universe

  • J. A. Jiménez MadridEmail author
  • P. F. González-Díaz
Article

Abstract

This paper deals with a study of the accretion of dark energy with the equation of state p = ωρ onto Kerr-Newman black holes. We have obtained that, when ω > −1, the mass and specific angular momentum increase, and that whereas the specific angular momentum increases up to a given plateau, the mass grows up unboundedly. In the regime where the dominant energy condition is violated, our model predicts steadily decreasing mass and angular momentum of a black hole as phantom energy is being accreted. Masses and angular momenta of all black holes tend to zero when one approaches the Big Rip. The results that cosmic censorship is violated and that the black hole size increases beyond the universe size itself are discussed in terms of considering the models used as approximations to more general descriptions where the metric is time-dependent.

PACS numbers

04.20.Jb 95.35.+d 98.80.Hw 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. G. Riess et al. [Supernova Search Team Collaboration], Astron. J. 116, 1009 (1998); astro-ph/9805201; S. Perlmutter et al. [Supernova Cosmology ProjectCollaboration], Astrophys. J. 517, 565 (1999); astro-ph/9812133; J. L. Tonry et al., Astrophys. J. 594, 1 (2003); astro-ph/0305008.CrossRefADSGoogle Scholar
  2. 2.
    D. N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003); astro-ph/0302209; C. L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003) [arXiv:astro-ph/0302207]; M. Tegmark et al. [SDSS Collaboration], Phys. Rev. D 69, 103501 (2004); astro-ph/0310723.CrossRefADSGoogle Scholar
  3. 3.
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1999); P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003); astro-ph/0207347; T. Padmanabhan, Phys. Rep. 380, 235 (2003) hep-th/0212290; astro-ph/0411044.CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988); B. Ratra and P. J. Peebles, Phys. Rev. D 37, 3406 (1988); R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); astro-ph/9708069; P. F. González-Díaz, Phys. Rev.D 62, 023513 (2000); astro-ph/0004125; Y. Fujii, Phys. Rev. D 62, 064004 (2000); gr-qc/9908021CrossRefADSGoogle Scholar
  5. 5.
    C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys. Lett. B 458, 209 (1999); hep-th/9904075; J. Garriga and V. F. Mukhanov, Phys. Lett. B 458, 219 (1999); hep-th/9904176; T. Chiba, T. Okabe and, M. Yamaguchi, Phys. Rev. D 62, 023511 (2000); astro-ph/9912463; C. Armendariz-Picon, V. Mukhanov, and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000); astro-ph/0004134; Phys. Rev. D 63, 103510 (2001); astro-ph/0006373; M. Malquarti, E. J. Copeland, A. R. Liddle, and M. Trodden, Phys. Rev. D 67, 123503 (2003); astro-ph/0302279; M. Malquarti, E. J. Copeland, and A. R. Liddle, Phys. Rev. D 68, 023512 (2003); astro-ph/0304277.zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B 511, 265 (2001); gr-qc/0103004; V. Gorini, A. Kamenshchik, and U.Moschella, Phys. Rev. D 67, 063509 (2003); astro-ph/0209395; N. Bilic, G. B. Tupper and R. D. Viollier, Phys. Lett. B 535, 17 (2002); astro-ph/0111325; astro-ph/0207423; M. C. Bento, O. Bertolami and A. A. Sen, Phys. Rev. D 66, 043507 (2002); grqc/0202064; Phys. Rev. D 67, 063003 (2003); astro-ph/0210468; Phys. Lett. B 575, 172 (2003); astro-ph/0303538; O. Bertolami, A. A. Sen, S. Sen, and P. T. Silva, MNRAS 353, 329 (2004); astro-ph/0402387; V. Gorini, A. Kamenshchik, U. Moschella, and V. Pasquier, gr-qc/0403062; O. Bertolami, astro-ph/0403310.zbMATHCrossRefADSGoogle Scholar
  7. 7.
    R. Bean and O. Dore, Phys. Rev. D 68, 023515 (2003); astro-ph/0301308.Google Scholar
  8. 8.
    T. Multamaki, M. Manera, and E. Gaztanaga, Phys. Rev. D 69, 023004 (2004); astro-ph/0307533Google Scholar
  9. 9.
    L. Amendola, F. Finelli, C. Burigana, and D. Carturan, JCAP 0307, 005 (2003); astro-ph/0304325; J. C. Fabris, S. V. Goncalves, and P. E. de Souza, Gen. Rel. Grav. 34, 53 (2002), gr-qc/0103083; Gen. Rel. Grav. 34, 2111 (2002), astro-ph/0203441; A. Dev, D. Jain and J. S. Alcaniz, Phys. Rev. D 67, 023515 (2003), astro-ph/0209379; Astron. Astrophys. 417, 847 (2004), astro-ph/0311056; R. Colistete, J. C. Fabris, S.V. Goncalves, and P. E. de Souza, gr-qc/0210079; H. Sandvik, Phys. Rev. D 69, 123524 (2004); astro-ph/0212114; L. M. Beca, P. P. Avelino, J. P. de Carvalho, and C. J. Martins, Phys. Rev. D 67, 101301 (2003); astro-ph/0303564; L. P. Chimento, Phys. Rev. D 69, 123517 (2004); astro-ph/0311613; M. Biesiada, W. Godlowski, and M. Szydlowski, Astrophys. J. 622, 28 (2005); astro-ph/0403305.ADSGoogle Scholar
  10. 10.
    M. Bouhmadi-Lopez and P. Vargas Moniz, Phys.Rev. D 71, 063521 (2005); gr-qc/0404111.Google Scholar
  11. 11.
    C. Deffayet, Phys. Lett. B 502, 199 (2001); hep-th/0010186; C. Deffayet, G. R. Dvali, and G. Gabadadze, Phys. Rev. D 65, 044023 (2002); astro-ph/0105068; V. Sahni and Y. Shtanov, JCAP 0311, 014 (2003); astro-ph/0202346.zbMATHCrossRefADSGoogle Scholar
  12. 12.
    S. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Phys. Rev. D 70, 043528 (2004); astro-ph/0306438.Google Scholar
  13. 13.
    R. R. Caldwell, Phys. Lett. B 545, 23 (2002); astro-ph/9908168; A. A. Starobinsky,Grav.Cosmol. 6, 157 (2000); astro-ph/9912054.CrossRefADSGoogle Scholar
  14. 14.
    R. R. Caldwell, M. Kamionkowski and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003); astro-ph/0302506.Google Scholar
  15. 15.
    B. McInnes, JHEP 0208, 029 (2002); hep-th/0112066; S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509 (2003); astro-ph/0301273.CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    P. Singh, M. Sami, and N. Dadhich, Phys. Rev. D 68, 023522 (2003); hep-th/0305110; J. G. Hao and X. Z. Li, Phys. Rev. D 70, 043529 (2004); astro-ph/0309746Google Scholar
  17. 17.
    J. g. Hao and X. Z. Li, Phys. Rev. D 68, 043501 (2003), hep-th/0305207; Phys. Rev. D 68, 083514 (2003), hep-th/0306033; D. j. Liu and X. Z. Li, Phys. Rev. D 68, 067301 (2003); hep-th/0307239.Google Scholar
  18. 18.
    P. F. González-Díaz, Phys. Rev. D 68, 021303 (2003); astro-ph/0305559; G.W. Gibbons, hep-th/0302199; R. Kallosh, J. Kratochvil, A. Linde, E. V. Linder, and M. Shmakova, JCAP 0310, 015 (2003); astro-ph/0307185; L. P. Chimento and R. Lazkoz, Phys. Rev. Lett. 91, 211301 (2003); gr-qc/0307111; M. P. Dabrowski, T. Stachowiak, and M. Szydlowski, Phys. Rev. D 68, 103519 (2003); hep-th/0307128; V. Faraoni, Phys. Rev. D 68, 063508 (2003); grqc/0307086; H. Stefancic, Phys. Lett. B 586, 5 (2004); astro-ph/0310904; V. B. Johri, Phys. Rev. D 70, 041303 (2004); astro-ph/0311293; J. M. Cline, S. y. Jeon and G. D. Moore, Phys. Rev. D 70, 043543 (2004); hep-ph/0311312; H. Q. Lu, Int. J. Mod. Phys. D 14, 355 (2005); hep-th/0312082; X. H.Meng and P.Wang, hep-ph/0311070; S. Nojiri andS. D. Odintsov, Phys. Lett.B 571, 1 (2003); hep-th/0306212; Phys. Lett. B 562, 147 (2003); hep-th/0303117; Phys. Lett. B 565, 1 (2003); hep-th/0304131; Phys. Lett. B 599, 137 (2004); astro-ph/0403622; I. Brevik, S. Nojiri, S. D. Odintsov, and L. Vanzo, Phys. Rev. D 70, 043520 (2004); hep-th/0401073; J. S. Alcaniz, Phys. Rev. D 69, 083521 (2004); astro-ph/0312424; G. Calcagni, Phys. Rev. D69, 103508 (2004); hep-ph/0402126; J.M. Aguirregabiria, L. P. Chimento, and R. Lazkoz, Phys. Rev. D 70, 023509 (2004); astro-ph/0403157; J. G. Hao and X. Z. Li, Phys. Lett. B 606, 7 (2005); astro-ph/0404154.Google Scholar
  19. 19.
    M. Bouhmadi-Lopez and J. A. Jimenez Madrid, JCAP 0505, 005 (2005); astro-ph/0404540.ADSGoogle Scholar
  20. 20.
    E. Babichev, V. Dokuchaev, and Y. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004); gr-qc/0402089.Google Scholar
  21. 21.
    E. Babichev, V. Dokuchaev, and Y. Eroshenko, Zh. Eksp. Teor. Fiz. 127, 597 (2005); astro-ph/0505618.Google Scholar
  22. 22.
    R. M. Wald, General Relativity (University of Chicago Press, 1984).Google Scholar
  23. 23.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields: Volume 2 (Course of Theoretical Physics Series) (Pergamon Press, 1995).Google Scholar
  24. 24.
    G. Ellis and S. W. Hawking, The large scale structure of space-time (Cambridge University Press, 1973).Google Scholar
  25. 25.
    C. Wetterich, Nucl. Phys. B 302, 668 (1988); J. C. Jackson and M. Dodgson, Mon. Not. R. Astron. Soc. 297, 923 (1998); J. C. Jackson, Mon. Not. R. Astron. Soc. 296, 619 (1998); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998); L. Wang and P. J. Steinhardt, Astrophys. J. 508, 483 (1998); R. R. Caldwell and P. J. Steinhardt, Phys. Rev. D 57, 6057 (1998); G. Huey, L. Wang, R. Dave, R. R. Caldwell, and P. J. Steinhardt, Phys. Rev. D 59, 063005 (1999); P. F. González-Díaz, Phys. Rev. D 62, 023513 (2000); J. D. Barrow, Phys. Lett. B 180, 335 (1986); Phys. Lett. B 235, 40 (1990); D. Bazeia and J. Jackiw, Ann. Phys. 270, 246 (1998).CrossRefADSGoogle Scholar
  26. 26.
    R. Penrose Gravitional collapse: the role of general relativity, Riv. Nuovo Cimento 1, special number (1969), p. 252.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • J. A. Jiménez Madrid
    • 1
    • 2
    Email author
  • P. F. González-Díaz
    • 2
  1. 1.Instituto de Matemáticas y Física Fundamental Consejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Instituto de Astrofísica de AndalucíaConsejo Superior de Investigaciones Científicas CaminoGranadaSpain

Personalised recommendations