Gravitation and Cosmology

, Volume 14, Issue 1, pp 65–79 | Cite as

Stellar models with Schwarzschild and non-Schwarzschild vacuum exteriors

  • J. Ponce de LeonEmail author


A striking characteristic of non-Schwarzschild vacuum exteriors is that they contain not only the total gravitational mass of the source but also an arbitrary constant. In this work, we show that the constants appearing in the “temporal Schwarzschild”, “spatial Schwarzschild” and “Reissner-Nordströmlike” exteriors are not arbitrary but are completely determined by the star’s parameters, like the equation of state and the gravitational potential. Consequently, in the braneworld scenario, the gravitational field outside a star is no longer determined by the total mass alone but also depends on the details of the internal structure of the source. We show that the general-relativistic upper bound on the gravitational potential M/R < 4/9 for perfect fluid stars is significantly increased in these exteriors. Namely, M/R < 1/2, M/R < 2/3 and M/R < 1 for the temporal Schwarzschild, spatial Schwarzschild and Reissner-Nordström-like exteriors, respectively. We find that stellar models embedded in such exteriors are very diverse and rich in structure: For stars like our Sun, the deviation from the Schwarzschild exterior metric is automatically negligible, but in other limits they allow the existence of new kinds of stellar models which have no general-relativistic counterpart. Regarding the surface gravitational redshift, we find that the general-relativistic Schwarzschild exterior as well as the braneworld spatial Schwarzschild exterior lead to the same upper bound, viz., Z < 2. However, when the external spacetime is the temporal Schwarzschild metric or the Reissner-Nordström-like exterior, there is no such constraint: Z < ∞. This infinite difference in the limiting value of Z is because for these exteriors the effective pressure at the surface is negative. The results of our work are potentially observable and can be used to test the theory.

PACS numbers

04.50.+h 04.20.Cv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Maartens, Phys. Rev. D 62, 084023 (2000); hepth/ 0004166.MathSciNetGoogle Scholar
  2. 2.
    R. Maartens, in Frames and Gravitomagnetism, Ed. by J. Pascual-Sanchez et al. (World Sci., 2001), p. 93–119; gr-qc/0101059.Google Scholar
  3. 3.
    N. Dadhich and S. G. Gosh, Phys. Lett. B 518, 1 (2001); hep-th/0101019.CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Govender and N. Dadhich, Phys. Lett. B 538, 233 (2002); hep-th/0109086.CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    C. Germani and Roy Maartens, Phys. Rev. D 64, 124010 (2001); hep-th/0107011.ADSMathSciNetGoogle Scholar
  6. 6.
    M. Bruni, C. Germani, and R. Maartens, Phys. Rev. Lett. 87, 231302 (2001); gr-qc/0108013.ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Kofinas and E. Papantonopoulos, J. Cosmol. Astropart. Phys. 12, 11 (2004); gr-qc/0401047.ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    P. S. Wesson, G. Rel. Gravit. 16, 193 (1984).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Ponce de Leon, Gen. Rel. Grav. 20, 539 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    P. S. Wesson and J. Ponce de Leon, J. Math. Phys. 33, 3883 (1992).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. A. Coley and D. J. McManus, J. Math. Phys. 36, 335 (1995).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    J.M. Overduinand, P. S. Wesson,Phys. Rep. 283, 303 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    A. P. Billiard and A. A. Coley, Mod. Phys. Lett. A 12, 2121 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    P. S. Wesson, Space-Time-Matter (World Scientific, 1999).Google Scholar
  15. 15.
    J. Ponce de Leon, Int. J. Mod. Phys. D 11, 1355 (2002); gr-qc/0105120.ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    J. Ponce de Leon, Mod. Phys. Lett. A 16; grqc/ 0111011.Google Scholar
  17. 17.
    J. Ponce de Leon, Class. Quant. Grav. 23, 3043 (2006); gr-qc/0512067.CrossRefzbMATHGoogle Scholar
  18. 18.
    S. S. Seahra and P. S. Wesson, Class. Quant. Grav. 20, 1321 (2003); gr-qc/0302015.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    P. S.Wesson, In Defense of Campbell’s Theorem as a Frame forNewPhysics; gr-qc/0507107.Google Scholar
  20. 20.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999); hep-th/9906064.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    T. Shiromizu, K. Maeda, and M. Sasaki, Phys. Rev. D 62, 02412 (2000); gr-qc/9910076.Google Scholar
  22. 22.
    J. Ponce de Leon, Mod. Phys. Lett. A 21, 947 (2006); gr-qc/0511067.ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    N. Dadhich, R. Maartens, P. Papadopoulos, and V. Rezania, Phys. Lett. B 487, 1 (2000); hepth/ 0003061.CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    R. Casadio, A. Fabbri, and L. Mazzacurati, Phys. Rev. D 65, 084040 (2002); gr-qc/0111072.MathSciNetGoogle Scholar
  25. 25.
    M. Visser and D. L. Wiltshire, Phys. Rev. D 67, 104004 (2003); hep-th/0212333.MathSciNetGoogle Scholar
  26. 26.
    K. A. Bronnikov, H. Dehnen, and V. N. Melnikov, Phys. Rev. D 68, 024025 (2003); gr-qc/0304068.ADSMathSciNetGoogle Scholar
  27. 27.
    S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, Inc. 1972).Google Scholar
  28. 28.
    L. Bowers and E. P. T. Liang, Astrophys. J. 188, 657 (1974).ADSCrossRefGoogle Scholar
  29. 29.
    J. Ponce de Leon, Phys. Rev. D 37, 309 (1988).ADSMathSciNetGoogle Scholar
  30. 30.
    H. A. Buchdahl, Phys. Rev. 116, 1027 (1959).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    J. Ponce de Leon, Gen. Rel. Grav. 36, 923 (2004); grqc/ 0212058.ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    K.A. Bronnikov and S.-W. Kim, Phys. Rev. D 67, 064027 (2003); gr-qc/0212112.MathSciNetGoogle Scholar
  33. 33.
    J. Ponce de Leon, Class. Quant. Grav. 24, 1755 (2007); gr-qc/0701129.ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Laboratory of Theoretical Physics, Department of PhysicsUniversity of Puerto RicoSan JuanUSA

Personalised recommendations