Gravitation and Cosmology

, Volume 14, Issue 1, pp 1–7 | Cite as

Is dark matter the relic of the primordial matter that created the visible matter of the universe?

Article

Abstract

Quantum field theory in nonstationary curved Friedmann spacetime leads to the phenomenon of massive particles creation. The hypothesis that, at the end of inflation, gravitation creates from vacuum superheavy particles as some primordial matter decaying into quarks and leptons, leading to the observed baryonic charge, is investigated. Taking a complex scalar field for these particles, by analogy with K0 meson theory, one obtains two components, the long-and short-lived ones, so that the long-lived component, after breaking the Grand Unification symmetry, has a long lifetime and is observed today as dark matter. The hypothesis, that ultra-high energy cosmic rays occur as a manifestation of superheavy dark matter, is considered, and some experimental possibilities of the proposed scheme are analyzed. Some new results on nonconformal scalar particle creation are presented.

PACS numbers

04.62.+v 98.80.Cq 95.35.+d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Grib, S.G. Mamayev, and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Lab. Publ., St. Petersburg, 1994).Google Scholar
  2. 2.
    A. A. Grib, Early Expanding Universe and Elementary Particles (Friedmann Lab. Publ., St. Petersburg, 1995).Google Scholar
  3. 3.
    A. A. Grib and Yu. V. Pavlov, Int. J. Mod. Phys. D 11, 433 (2002); Int. J. Mod. Phys. A 17, 4435 (2002); Gravit. & Cosmology 8, Suppl., 148 (2002); Gravit. & Cosmology 12, 159 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    A. O. Barvinsky, Physics—Uspekhi 48, 545 (2005).ADSGoogle Scholar
  5. 5.
    K. Greisen, Phys.Rev. Lett. 16, 748 (1966); G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    N.D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).CrossRefMATHGoogle Scholar
  7. 7.
    A. A. Grib and S. G. Mamayev, Yadernaya Fizika 10, 1276 (1969) [Sov. J. Nucl. Phys. 10, 722 (1970)].Google Scholar
  8. 8.
    S. A. Fulling, Gen. Relativ. Gravit. 10, 807 (1979).ADSCrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Yu. V. Pavlov, Teor. Mat. Fiz. 126, 92 (2001).CrossRefMATHGoogle Scholar
  10. 10.
    A. D. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, Switzerland, 1990).Google Scholar
  11. 11.
    Yu. V. Pavlov, Teor.Mat. Fiz. 140, 1095 (2004).CrossRefMATHGoogle Scholar
  12. 12.
    L. P. Grishchuk and V. M. Yudin, J. Math. Phys. 21, 1168 (1980).ADSCrossRefGoogle Scholar
  13. 13.
    S. G. Mamayev, V. M. Mostepanenko, and A. A. Starobinsky, Sov. Phys. JETP 43, 823 (1976).ADSGoogle Scholar
  14. 14.
    A. A. Grib and E. A. Poberii, Helv. Phys. Acta 68, 380 (1995).MATHMathSciNetGoogle Scholar
  15. 15.
    Ya. B. Zel’dovich and I. D. Novikov, The Structure and Evolution of the Universe (Nauka, Moscow, 1975).Google Scholar
  16. 16.
    S. Weinberg, The First Three Minutes. A Modern View of the Origin of the Universe (Basic Books, New York, 1977).Google Scholar
  17. 17.
    A. A. Grib and V. Yu. Dorofeev, Int. J. Mod. Phys. D 3, 731 (1994).ADSCrossRefGoogle Scholar
  18. 18.
    V. A. Kuzmin and V. A. Rubakov, Physics of Atomic Nuclei 61, 1028 (1998).ADSGoogle Scholar
  19. 19.
    V. Berezinsky, M. Kachelriess, and A. Vilenkin, Phys. Rev. Lett. 79, 4302 (1997).ADSCrossRefGoogle Scholar
  20. 20.
    V. Berezinsky, P. Blasi, and A. Vilenkin, Phys. Rev. D 58, 103515 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    V. Kuzmin and I. Tkachev, Phys. Rev. D 59, 123006 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    C.-H. Chou and K.-W. Ng, Phys. Lett. B 594, 1 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996).ADSCrossRefGoogle Scholar
  24. 24.
    H. V. Klapdor-Kleingrothaus and K. Zuber, Particle Astrophysics (Institute of Physics, Bristol, 1997).MATHGoogle Scholar
  25. 25.
    M. Gell-Mann, P. Ramond, and S. Slansky, in Supergravity, Ed. by P. vanNiewenhuizen and D. Z. Freedman (North Holland, Amsterdam, 1979), pp. 315– 321.Google Scholar
  26. 26.
    R. Aloisio, V. Berezinsky, and M. Kachelriess, Phys. Rev. D 74, 023516 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.A. Friedmann Laboratory for Theoretical PhysicsSt. PetersburgRussia
  2. 2.Russian State Pedagogical University (The Herzen University)St. PetersburgRussia
  3. 3.Institute of Mechanical EngineeringRussian Acad. Sci.St. PetersburgRussia

Personalised recommendations