Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Vertical Distribution of Methane in Baikal Water

  • 25 Accesses

Abstract

Data on the vertical distribution of dissolved methane in Baikal water column are analyzed. The zone of open lake now shows an increase in the concentrations of dissolved methane compared with 2002–2004. The possible causes of this phenomena are considered. Methane concentration in the aerobic water column of Baikal decreases from the surface toward the bottom. The active layer of the lake, as well as that in the ocean, contains a peak of methane concentration. In the main, deep part of the water column, methane concentration is lower than that equilibrium with the atmosphere because of the activity of aerobic methanotrophic microflora. The standard procedure of the static headspace analysis for determining methane is supplemented by measuring the pressure in a closed system. The concentrations of methane determined by methods of vacuum extraction and static headspace analysis are compared.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    Alekin, O.A., Osnovy gidrokhimii (Fundamentals of Hydrochemistry), Leningrad: Gidrometeoizdat, 1970.

  2. 2

    Afanas’eva, E.L., Biologiya baikal’skoi epishury (Baikal Epishura Biology), Novosibirsk: Nauka, 1977.

  3. 3

    Bol’shakov, A.M. and Egorov, A.V., On the use of method of phase-equilibrium degassing in gasometric studies, Okeanologiya, 1987, vol. 27, no. 5, pp. 861–862.

  4. 4

    Vitenberg, A.G., Static vapor-phase gas-chromatographic analysis. Physicochemical principles and application fields, Ross. Khim. Zh., 2003, vol. 47, no. 1, pp. 7–22.

  5. 5

    Vitenberg, A.G. and Ioffe, B.V., Gazovaya ekstraktsiya v khromatograficheskom analize (Gas Extraction in Chromatographic Analysis), Leningrad: Khimiya, 1982.

  6. 6

    Vitenberg, A.G. and Ioffe, B.V., Gazovaya ekstraktsiya v khromatograficheskom analize (Gas Extraction in Chromatographic Analysis), Leningrad: Khimiya, 1992.

  7. 7

    Vitenberg, A.G. and Marinichev, A.N., Effect of variations in the total pressure on the accuracy of gas-chromatographic vapor-phase analysis, Dokl. Akad. Nauk, 1985, vol. 282, no. 2, pp. 353–358.

  8. 8

    Gal’chenko, V.F., Metanotrofnye bakterii (Macrophyte Bacteria), Moscow: GEOS, 2001.

  9. 9

    Geodekyan, A.A., Trotsyuk, V.Ya., Avilov, V.I., and Verkhovskaya, Z.I., Hydrocarbon gases, Okeanologiya (Oceanology), Bordovskii, O.K., Ivanenkov, V.N., Eds., vol. 1, Khimiya vod okeana (Oceanic Water Chemistry), Moscow: Nauka, 1979, pp. 164–175.

  10. 10

    Granin, N.G., Mizandrontsev, I.B., Kozlov, V.V., Tsvetova, E.A., Gnatovskii, R.Yu., Blinov, V.V., Aslamov, I.A., Kucher, K.M., Ivanov, V.G., and Zhdanov, A.A., Kol’tsevye struktury na ledovom pokrove ozera Baikal: analiz eksperimental’nykh dannykh i matematicheskoe modelirovanie, Geol. Geofiz., 2018, vol. 59, no. 11, pp. 1890–1903.

  11. 11

    Granin, N.G., Mizandrontsev, I.B., Obzhirov, A.I., Vereshchagina, O.F., Gnatovskii, R.Yu., and Zhdanov, A.A., Oxidation of methane in the water column of Lake Baikal, Dokl. Earth Sci., 2013, vol. 451, no. 3, pp. 784–786.

  12. 12

    Granin, N.G., Mizandrontsev, I.B., Obzhirov, A.I., Salyuk, A.A., Vereshchagina, O.F., and Gnatovskii, R.Yu., Gas exchange of Baikal by methane with the atmosphere, Tez. dokl. Chetvertoi Vereshchaginskoi Baikal’skoi konf. (Abstract of Papers, Fourth Vereshchagin Baikal Conf.), Irkutsk, 2005, pp. 56–57.

  13. 13

    Egorov, A.V., Methane biogeochemistry in the sediments of the Baltic and Black Seas: kinetic models of diagenesis, Oceanology (Engl. Transl.), 2000, vol. 40, no. 5, pp. 647–653.

  14. 14

    Egorov, A.V., Zemskaya, T.I., and Grachev, M.A., Major regularities in methane distribution in water and sediments of Lake Baikal, Tez. dokl. Chetvertoi Vereshchaginskoi Baikal’skoi konf. (Abstract of Papers, Fourth Vereshchagin Baikal Conf.), Irkutsk, 2005, pp. 76–77.

  15. 15

    Levi, K.G., Miroshnichenko, A.I., Ruzhich, V.V., San’kov, V.A., Alakshin, A.M., Kirillov, P.G., Kolman, S., and Lukhnev, A.V., Modern fault-formation and seismicity in Baikal Rift, Fiz. Mekh., 1999, pp. 171–180.

  16. 16

    Lein, A.Yu. and Ivanov, M.V., Largest on the Earth Methane Water Body, Priroda (Moscow, Russ. Fed.), 2005, no. 2, pp. 19–25.

  17. 17

    Obzhirov, A.I., Geokhimicheskie gazovye polya v vodakh osadkov morei i okeanov (Geochemical Gas Fields in Waters of Marine and Oceanic Sediments), Moscow: Nauka, 1993.

  18. 18

    Obzhirov, A.I., Vereshchagina, O.F., Zyuss, E., Lammers, Sh., Vinkler, G., Bibou, N., Shakirov, R.B., and Druzhinin, V.V., Methane distribution in water columns of the eastern shelf and Slope of Sakhalin in the Sea of Okhotsk in different seasons of 1998–2000, Monitoring metana v Okhotskom more (Methane Monitoring in the Sea of Okhotsk), Obzhirov, A.I., Salyuk, A.N., and Vereshchagina, O.F., Eds., Vladivostok: Dal’nauka, 2002.

  19. 19

    Fedorov, Yu.A., Nikanorov, A.M., and Tambieva, N.S., First data on the biogenic methane distribution in water and bottom sediments of Lake Baikal, Dokl. Earth. Sci., 1997, vol. 353, no. 3, pp. 424–396.

  20. 20

    Conrad, R., The global methane cycle: recent advances in understanding the microbial processes involved, Environ. Microbiol., 2009, Rep. 1, pp. 285–292. https://doi.org/10.1111/j.1758-2229.2009.00038.x

  21. 21

    Craig, H. and Weiss, R.F., Dissolved gas saturation anomalies and excess helium in the ocean, Earth Planet-. Sci. Lett., 1971, vol. 10, no. 3, pp. 289–296.

  22. 22

    Cynar, F.J. and Yayanos, A.A., Enrichment and characterization of methanogenic bacterium from the oxic upper layer of the ocean, Curr. Microbiol., 1991, vol. 23, pp. 89–96.

  23. 23

    Damm, E., Helmke, E., Thoms, S., Schauer, U., Nothig, E., Bakker, K., and Kiene, R.P., Methane production in aerobic surface water in central Arctic Ocean, Biogeosciences, 2010, vol. 7, pp. 1099–1108.

  24. 24

    Granin, N.G., Radzyminovich, N.A., Granina, L.Z., Blinov, V.V., and Gnatovsky, R.Yu., Freshening of near-bottom waters in Lake Baikal triggered by the Mw6. 2 Kultuk earthquake of August 2008, Geo-Marine Lett., 2012, vol. 32, no. 5, pp. 453–464.

  25. 25

    Granin, N.G., Suetnova, E.I., and Granina, L.Z., Decomposition of gas hydrates in bottom sediments of Lake Baikal: possible causes and consequence, Abstr. Vol. Joint Conf. “Minerals of Ocean-5 and Deep-Sea Minerals,” 2010, pp. 110–113.

  26. 26

    Grossart, H.P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K.W., Microbial methane production in oxygenated water column of an oligotrophic lake, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 19 657–19 661. https://doi.org/10.1073/pnas.1110716108

  27. 27

    Hanson, R.S. and Hanson, T.E., Methanotrophic bacteria, Microbiol. Rev., 1996, vol. 60, pp. 439–471.

  28. 28

    Hofmann, H., Frederwisch, L., and Peeters, F., Wave-induced release of methane: littoral zones as a source of methane in lakes, Limnol. Oceanogr., 2010, vol. 55, pp. 1990–2000.https://doi.org/10.4319/lo,2010.55.5.1990

  29. 29

    Karl, D.N., Beversdorf, L., Björkman, K.M., and Church, M.J., Martinez, A., and Delong, E.F., Aerobic production of methane in the sea, Nat. Geosci., 2008, vol. 1, pp. 473–478.

  30. 30

    Kolb, B. and Ettre, L.S., Static Headspace-Gas Chromatography, Theory and Practice, N. Y.: Wiley, 2006.

  31. 31

    Lamontagne, R.A., Swinnerton, J.W., Linnenbom, V.J., and Smith, W.D., Methane concentration in various marine environments, J. Geophys. Res., 1973, vol. 78, no. 4, pp. 5317–5324.

  32. 32

    Lilley, M.D., Baross, J.A., and Gordon, L.I., Dissolved hydrogen and methane in Saanich Inlet, British Columbia, Deep-Sea Res., 1982, vol. 29, pp. 1471–1484.

  33. 33

    Murase, J. and Sugimoto, A., Inhibitory effect of light on methane oxidation in pelagic water column of a mesotrophic lake (Lake Biwa, Japan), Limnol. Oceanogr., 2005, vol. 50, pp. 1339–1343.

  34. 34

    Oremland, R.S., Methanogenic activity in plankton samples and fish intestines: a mechanism for in situ methanogenesis in oceanic surface waters, Limnol. Oceanogr., 1979, vol. 24, pp. 1136–1141.

  35. 35

    Reeburgh, W.S., Oceanic methane biogeochemistry, Chem. Rev., 2007, vol. 107, pp. 486–513.

  36. 36

    Schmid, M., De Batist, M., Granin, N.G., Kapitanov, V.A., McGinnis, D.F., Mizandrontsev, I.B., Obzhirov, A.I., and Wüest, Sources and sinks of methane in Lake Baikal: a synthesis of measurements and modeling, Limnol. Oceanogr., 2007, vol. 52, no. 5, pp. 1824–1837.

  37. 37

    Schmidt, U., and Conrad, R., Hydrogen, carbon monoxide, and methane dynamics in Lake Constance, Limnol. Oceanogr., 1993, vol. 38, no. 6, pp. 1214–1226.

  38. 38

    Sieburth, J.M., Contrary habitats for redox-specific processes: methanogenesis in oxic waters and oxidation in anoxic, in Microbes in the Sea, Ellis-Horwood, Sleight, M.A, Eds., 1987, pp. 11–38.

  39. 39

    Tang, K.W., McGinnis, D.F., Frindte, K., Bruchert, V., and Grossart, H.-P., Paradox reconsidered: methane oversaturation in well-oxygenated lake waters, Limnol. Oceanogr., 2014, vol. 59, no. 1, pp. 275–284.

  40. 40

    Vereshchagina, O.F., Korovitskaya, E.V., and Mishukova, G.I., Methane in water columns and sediments of North Western Sea of Japan, Deep-Sea Res., Pt. II, 2013, pp. 86–87.

Download references

ACKNOWLEDGEMENTS

The authors are grateful to S.K. Konovalov (Hydrophysical Institute, Russian Academy of Sciences) for recommendations regarding the structure of the article and A.A. Nikonova (Limnological Institute, Siberian Branch, Russian Academy of Sciences) for help in the work.

Funding

This study was supported by budgetary project 0345‑2019‑0008 and project 0348-2019-0012.

Author information

Correspondence to V. G. Ivanov.

Additional information

Translated by G. Krichevets

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mizandrontsev, I.B., Kozlov, V.V., Ivanov, V.G. et al. Vertical Distribution of Methane in Baikal Water. Water Resour 47, 122–129 (2020). https://doi.org/10.1134/S0097807820010108

Download citation

Keywords:

  • methane dissolved in water
  • Baikal
  • gas-hydrates
  • static headspace analysis
  • methane paradox