Advertisement

Water Resources

, Volume 46, Supplement 2, pp S40–S50 | Cite as

Sensitivity Assessment of a Runoff Formation Model in the Mozhaisk Reservoir River Basin

  • K. V. SuchkovaEmail author
  • Yu. G. MotovilovEmail author
WATER RESOURCES AND THE REGIME OF WATER BODIES
  • 23 Downloads

Abstract

The physically based model of river runoff formation with a daily resolution ECOMAG was adapted for the Mozhaisk Reservoir with an area of 1360 km2. A large series of numerical experiments were carried out in order to investigate the sensitivity of the model to the spatial resolution of land surface characteristics and the size of calculation cells. Digital elevation models (DEMs) of three different spatial resolutions (50, 100 m, and 2 km) were used along with model schematizations of the catchment area and river network with varying detail. In addition, the model sensitivity to sets of calibration parameters when modelling genetic runoff components was studied, as a part of the approaches to mitigating the problem of equifinality. The importance of incorporating additional hydrochemical information for a correct description of the spatial and temporal genetic structure of river runoff is shown.

Keywords:

equifinality spatial resolution model sensitivity hydrological model calibration 

REFERENCES

  1. 1.
    Antokhina, E.N. and Zhuk, V.A., Application of the ECOMAG model to simulation of river runoff from watersheds differing in their area, Vodn. Khoz. Rossii: Probl., Tekhnol., Upravl., 2011, no. 4, pp. 17–32.Google Scholar
  2. 2.
    Beck, H.E., De Jeu, R.A.M., Schellekens, J., Van Dijk, A.I.J.M., and Bruijnzeel, L.A., Improving curve number based storm runoff estimates using soil moisture proxies, IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, 2009, no. 2, pp. 250–259.   https://doi.org/10.1109/JSTARS.2009.2031227 CrossRefGoogle Scholar
  3. 3.
    Beven, K. and Freer, J., Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol., 2001, vol. 249, nos. 1–4, pp. 11–29.  https://doi.org/10.1016/S0022-1694(01)00421-8 CrossRefGoogle Scholar
  4. 4.
    Beven K., A manifesto for the equifinality thesis, J. Hydrol., 2006, vol. 320, nos. 1–2, pp. 18–36.  https://doi.org/10.1016/j.jhydrol.2005.07.007 CrossRefGoogle Scholar
  5. 5.
    Blöschl G., Scaling issues in snow hydrology, Hydrol. Processes, 1999, V. 13, nos. 14–15, pp. 2149–2175.CrossRefGoogle Scholar
  6. 6.
    Blöschl, G. Scaling in hydrology, Hydrol. Processes, 2001, vol. 15, pp. 709–711.  https://doi.org/10.1002/hyp.432 CrossRefGoogle Scholar
  7. 7.
    Bormann, H., Breuer, L., Gräff, T., Huisman, J.A., and Croke, B., Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) IV: Model sensitivity to data aggregation and spatial (re-) distribution, Adv. Water Resour., 2009, vol. 32, no. 2, pp. 171–192.  https://doi.org/10.1016/j.advwatres.2008.01.002 CrossRefGoogle Scholar
  8. 8.
    Kuchment, L.S. and Gelfan, A.N., The determination of the snowmelt rate and the meltwater outflow from a snowpack for modelling river runoff generation, J. Hydrol., 1996, vol. 179, nos. 1–4, pp. 23–36.  https://doi.org/10.1016/0022-1694(95)02878-1 CrossRefGoogle Scholar
  9. 9.
    Kuo, W.L., Steenhuis, T.S., McCulloch, C.E., Mohler, C.L., Weinstein, D.A., DeGloria, S.D., and Swaney, D.P., Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model, Water Resour. Res., 1999, vol. 35, no. 11, pp. 3419–3428.CrossRefGoogle Scholar
  10. 10.
    Moore, I.D., Lewis, A. and Gallant, J.C., Terrain attributes: Estimation methods and scale effects, in Modelling Change in Environmental Systems, Jakeman, A.J., Beck, M.B., and McAleer, M., Eds., New York: John Wiley, 1993.Google Scholar
  11. 11.
    Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P., Hydrologic and water quality models: performance measures and evaluation criteria, Trans. ASABE, 2015, vol. 58, no. 6, pp. 1763–1785.  https://doi.org/10.13031/trans.58.10715 CrossRefGoogle Scholar
  12. 12.
    Motovilov, Yu.G., Hydrological simulation of river watersheds at different spatial scales: 1. Generalization and averaging algorithms, Water Resour., 2016, vol. 43, no. 3, pp. 429–437.  https://doi.org/10.1134/S0097807816030118 CrossRefGoogle Scholar
  13. 13.
    Motovilov, Yu.G., Hydrological simulation of river basins at different spatial scales: 2. Test results, Water Resour., 2016, vol. 43, no. 5, pp. 743–753.  https://doi.org/10.1134/S0097807816050092 CrossRefGoogle Scholar
  14. 14.
    Motovilov, Yu.G., Modeling fields of river runoff (a case study for the Lena River Basin), Russ. Meteorol. Hydrol., 2017, vol. 42, no. 2, pp. 121–128.  https://doi.org/10.3103/S1068373917020066 CrossRefGoogle Scholar
  15. 15.
    Motovilov, Yu.G. and Gelfan A.N., Runoff Formation Models in the Application of Watershed Hydrology, Moscow, RAS, 2018.Google Scholar
  16. 16.
    Motovilov Yu.G. and Suchkova K.V., Modeling the Genetic Components of River Runoff for the Mozhaisk Reservoir Watershed, Water Resources, 2018, vol. 45, Suppl. 1, pp. S135–S145.  https://doi.org/10.1134/S0097807818050408 CrossRefGoogle Scholar
  17. 17.
    Motovilov, Y.G., Bugaets, A.N., Gartsman, B.I., Gonchukov, L.V., Kalugin, A.S., Moreido, V.M., Suchilina, Z.A., and Fingert, E.A., Assessing the sensitivity of a model of runoff formation in the Ussuri River Basin, Water Resour., 2018, vol. 45, Suppl. 1, pp. S128–S134.  https://doi.org/10.1134/S0097807818050391 CrossRefGoogle Scholar
  18. 18.
    Motovilov Y.G., Gottschalk L., Engeland L., and Rodhe A., Validation of a distributed hydrological model against spatial observation, Agric. For. Meteorol., 1999, vol. 98, pp. 257–277.  https://doi.org/10.1016/S0168-1923(99)00102-1 CrossRefGoogle Scholar
  19. 19.
    Nash J.E., and Sutcliffe J.V., River flow forecasting through conceptual models. Part I—A discussion of principles, J. Hydrol., 1970, vol. 10, no. 3, pp. 282–290.  https://doi.org/10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  20. 20.
    Parsons, A.J., Wainwright, J., Abrahams, A.D., and Simanton, J.R., Distributed dynamic modelling of interrill overland flow, Hydrol. Processes, 1997, vol. 11, no. 14, pp. 1833–1859.CrossRefGoogle Scholar
  21. 21.
    Quinn, P., Beven, K., Chevallier, P., and Planchon, O., The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models, Hydrol. Processes, 1991, vol. 5, no. 1, pp. 59–79.  https://doi.org/10.1002/hyp.3360050106 CrossRefGoogle Scholar
  22. 22.
    Suchkova, K.V., Motovilov, Yu.G, Edelshtein, K.K., Puklakov, V.V., Erina, O.N., and Sokolov, D.I., Modeling the genetic components of river runoff using a hydrochemical method of identifying water masses, Water: Chem. Ecol., 2019, nos. 1–3, pp. 46–56.Google Scholar
  23. 23.
    Sulis, M., Paniconi, C., and Camporese, M., Impact of grid resolution on the integrated and distributed response of a coupled surface–subsurface hydrological model for the des Anglais catchment, Quebec, Hydrol. Processes, 2011, vol. 25, no. 12, pp. 1853–1865.  https://doi.org/10.1002/hyp.7941 CrossRefGoogle Scholar
  24. 24.
    Wanders, N., Bierkens, M.F.P., de Jong, S.M., de Roo, A., and Karssenberg, D., The benefits of using remotely sensed soil moisture in parameter identification of largescale hydrological models, Water Resour. Res., 2014, vol. 50, no. 8, pp. 6874–6891.  https://doi.org/10.1002/2013WR014639 CrossRefGoogle Scholar
  25. 25.
    Xu, J., Ren L., Yuan, F., and Liu, X., The solution to DEM resolution effects and parameter inconsistency by using scale-invariant TOPMODEL, Hydrol. Res., 2012, vol. 43, nos. 1–2, pp. 146–155.  https://doi.org/10.2166/nh.2011.130 CrossRefGoogle Scholar
  26. 26.
    Yang, Y., Xiao, H.L., Zou, S.B., Zhao, L.J., Zhou, M.X., Hou, L.G., and Wang, F., Hydrochemical and hydrological processes in the different landscape zones of alpine cold region in China, Environ. Earth Sci., 2012, vol. 65, no. 3, pp. 609–620.  https://doi.org/10.1007/s12665-011-1108-7 CrossRefGoogle Scholar
  27. 27.
    Zhang, Q., Knowles, J.F., Barnes, R.T., Cowie, R.M., Rock, N., and Williams, M.W., Surface and subsurface water contributions to streamflow from a mesoscale watershed in complex mountain terrain, Hydrol. Processes, 2018, vol. 32, no. 7, pp. 954–967.  https://doi.org/10.1002/hyp.11469 CrossRefGoogle Scholar
  28. 28.
    Zhang, W. and Montgomery, D.R., Digital elevation model grid size, landscape representation and hydrologic simulations, Water Resour. Res., 1994, vol. 30, no. 4, pp. 1019–1028.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Water Problems Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations