Advertisement

Water Resources

, Volume 46, Issue 6, pp 959–965 | Cite as

Ecological–Microbiological Studies of Lake Beloe in Winter and Spring with the Use of Innovation Test-Systems

  • I. V. MosharovaEmail author
  • V. V. Il’inskii
  • S. A. Mosharov
  • A. Yu. Akulova
HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • 9 Downloads

Abstract

Chlorophyll a concentration, the total abundance of bacteria, the number of bacterial cells with active metabolism, and the abundance of saprotrophic bacteria were studied in the surface and bottom water layers of Lake Beloe in winter and spring 2015–2016. The abundance of sanitary-indicator microorganisms was determined for the first time with the use of Petrifilm test-systems (3MTM Petrifilm™). In most cases, Lake Beloe water in spring and winter was found to correspond to eutrophic level (in terms of chlorophyll a concentration in water) and polysaprobic status (in terms of microbiological indices). By its sanitary-microbiological characteristics, the lake is clear—the values of the total microbial count, determined with the use of test-systems 3M™ Petrifilm™ Aqua (AQHC), were <1000 CFU/mL, and the abundance of coliform bacteria, determined with the use of test-systems 3M™ Petrifilm™ Aqua (AQСC), varied from 20 to 135 CFU/100 mL. Coliform bacteria were mostly found in the bottom water layer. It was shown that, in the organization of ecological–microbiological studies, special attention is to be paid to the bottom horizons of water bodies.

Keywords:

bacterioplankton actively functioning bacteria chlorophyll a lakes of temperate latitudes petrifilms (3M™ Petrifilm™) sanitary-indicator microorganisms 

Notes

ACKNOWLEDGMENTS

This study was carried out under research program “Physiological Ecology of Microorganisms in Aquatic Ecosystems,” project no. АААА-А16-116021660041-4.

REFERENCES

  1. 1.
    Akulova, A.Yu., Il’inskii, V.V., Mosharova, I.V., Moskvina, M.I., Mosharov, S.A., and Komarova, T.I., The state of heterotrophic bacterioplankton in the coastal zones of the lakes of Svyatoe and Beloe in the Kosinskii Natural Historical Park, Moscow, in 2011, Izv. Samarskogo Nauch. Tsentra Ross. Akad. Nauk, 2014, vol. 16, no. 1, pp. 1185–1192.Google Scholar
  2. 2.
    Bul’on, V.V., Zakonomernosti pervichnoi produktsii v limnicheskikh ekosistemakh (Regularities in Primary Production in Limnic Ecosystems), St. Petersburg: Nauka, 1994.Google Scholar
  3. 3.
    Vagner, B.B. and Dmitrieva, V.T., Ozera i vodokhranilishcha moskovskogo regiona. Uchebnoe posobie po kursu “Geografiya i ekologiya Moskovskogo regiona” (Lakes and Reservoirs in the Moscow Region. A Textbook on the Course on “Geography and Ecology of the Moscow Region”), Moscow: Mos. Gos. Ped. Univ., 2004.Google Scholar
  4. 4.
    Goncharuk, E.I., Kommunal’naya gigiena (Communal Hygiene), Kiev: Zdorov’e, 2006.Google Scholar
  5. 5.
    GOST (State Standard) 17.1.2.04-77: Nature Protection. Hydrosphere, Moscow: IPK Izd. standartov, 2000.Google Scholar
  6. 6.
    Il’inskii, V.V., Mosharova, I.V., Akulova, A.Yu., and Mosharov, S.A., Current state of heterotrophic bacterioplankton in the Kosinskie Lakes, Water Resour., 2013, vol. 40, no. 5, pp. 518–527.CrossRefGoogle Scholar
  7. 7.
    Kitaev, N.P., Ekologicheskie osnovy bioproduktivnosti ozer raznykh prirodnykh zon (Ecological Bases of Lake Bioproduction in Different Natural Zones), Moscow: Nauka, 1984.Google Scholar
  8. 8.
    Kondakova, G.V., Sanitarnaya mikrobiologiya (Sanitary Microbiology), Yaroslavl: Yar. Gos. Univ., 2005.Google Scholar
  9. 9.
    Kuznetsov, S.I., Applying microbiological methods to studying organic matter in water bodies, Mikrobiologiya, 1949, vol. 18, no. 3, pp. 203–215.Google Scholar
  10. 10.
    Matorin, D.A. and Alekseev, A.A., Fluorestsentsiya khlorofilla dlya biodiagnostiki rastenii (Chlorophyll Fluorescence for Plant Biodiagnostics), Moscow: PKTs Al’teks, 2013.Google Scholar
  11. 11.
    Metodicheskie osnovy kompleksnogo ekologicheskogo monitoringa okeana (Methodological Principles of Comprehensive Environmental Monitoring of the Ocean), Tsyban’, A.V., Ed., Moscow: Gidrometeoizdat, 1988.Google Scholar
  12. 12.
    Metodicheskie rekomendatsii № 24 FTs/6289. Metody opredeleniya koliformnykh bakterii, bakterii vida E. coli s primeneniem plastin “Petrifilm” proizvodstva kompanii 3M (SShA) (Methodological Recommendations no. 24 FTs/6289. Methods for Determining E. coli Coliform Bacteria with the Use of Petrifilm Plates, 3M Company, USA), Moscow: Minzdrav RF, 2006.Google Scholar
  13. 13.
    Mosharova, I.V., Il’inskii, V.V., and Korsak, M.N., Environmental monitoring of aquatic ecosystems based on a new microbiological method, Bezop. Tekhnosf., 2016, no. 4, pp. 23–29.Google Scholar
  14. 14.
    Prakticheskaya gidrobiologiya. Presnovodnye ekosistemy. Ucheb. dlya stud. biol. spets. universitetov (Practical Hydrobiology. Freshwater Ecosystems. Textbook for Students of Biological Specialty in Universities), Fedorov, V.D. and Kapkov, V.I., Eds., Moscow: PIM, 2006.Google Scholar
  15. 15.
    SanPiN (Sanitary Regulations and Standards) 2.1.5.980-00 “Hygienic Requirements to Surface Water Protection,” January 1, 2001.Google Scholar
  16. 16.
    Sidorova, N.A. and Parshukov, A.N., Problems of sanitary standardization of northern freshwater ecosystems with the use of microbiological tests, Biologicheskie resursy Belogo morya i vnutrennikh vodoemov Evropeiskogo severa. Materialy XXVIII mezhdunar. konf. (Biological Resources of the White Sea and Internal Water Bodies of European North. Proc. XXVIII Intern. Conf.), Petrozavodsk, 2009, pp. 509–511.Google Scholar
  17. 17.
    Sokolov, D.M. and Nechaev, D.N., Petrifilms—innovation test-systems for microbiological control of drinking water, Vodosnabzh. Sanit. Tekh., 2013, no. 5, pp. 38–42.Google Scholar
  18. 18.
    Tymchuk, S.N., Larin, V.E., Sokolov, D.M., and Sokolov, M.S., Basic principles of sanitary-microbiological assessment of water intended for human consumption, Ekol. Vestn. Rossii, 2013, no. 6, pp. 20–30.Google Scholar
  19. 19.
    Dufour, P. and Torreton, J.P., Advantages of distinguishing the active fraction in bacterioplankton assemblages: some examples, Hydrobiologia, 1990, vol. 207, pp. 295–301.CrossRefGoogle Scholar
  20. 20.
    Jeffrey, S.W., Mantoura, R.F.C., and Wright, S.W., Phytoplankton pigments in oceanography: guidelines to modern methods, Paris: UNESCO Publ., 1997.Google Scholar
  21. 21.
    Schumann, R., Schiewer, U., Karsten, U., and Rieling, T., Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity, Aquat. Microb. Ecol., 2003, vol. 32, pp. 137–150.CrossRefGoogle Scholar
  22. 22.
    Sherr, B., Sherr, E., and Giorgio, P., Enumeration of total and highly active bacteria, Methods in Microbiol. Marine Microbiol, vol. 30, John H. Paul, Ed., Academic Press, 2001, pp. 129–160.Google Scholar
  23. 23.
    Sondergaard, M. and Danielsen, M., Active bacteria (CTC+) in temperate lakes: temporal and cross-system variations, J. Plankton Res., 2001, vol. 23, no. 11, pp. 1195–1206.CrossRefGoogle Scholar
  24. 24.
    Van Es, F.B. and Meyer-Reil, L.A., Biomass and metabolic activity of heterotrophic marine bacteria, Adv. Microbiol. Ecol., 1982, vol. 6, pp. 111–170. Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Mosharova
    • 1
    • 2
    Email author
  • V. V. Il’inskii
    • 1
  • S. A. Mosharov
    • 2
  • A. Yu. Akulova
    • 1
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Shirshov Institute of OceanologyMoscowRussia

Personalised recommendations