Advertisement

Water Resources

, Volume 46, Issue 6, pp 934–943 | Cite as

Experimental and Numerical Flow Simulation over Weirs

  • Hriday Mani KalitaEmail author
  • Rajdeep DasEmail author
  • Atul HajongEmail author
  • Neeraj KumarEmail author
  • Donly KharnaiorEmail author
  • Heart Casingh DkharEmail author
HYDROPHYSICAL PROCESSES
  • 20 Downloads

Abstract

This paper reports a series of experimental studies done to simulate the flow behavior over crump and ogee type of weirs. The transition of subcritical to supercritical flow, as it moves over weir crest is experimentally simulated. The steady state centreline water surface elevations for several discharge values are measured and noted for both the weirs. Moreover, another numerical model is also developed for the same purpose. In this regard, the shallow water equations in a deviatoric version are solved with an efficient and simple finite difference method. The numerical results obtained are found to be almost exactly matching with the experimental results. The quality of the numerical results are further tested with the help of two indicators namely, Nash indicator and Index of Agreement. The excellent values for these two parameters establish the potential of the proposed model for this type of mixed flow scenarios.

Keywords:

shallow water equations wetting and drying C-property irregular topography finite difference numerical modeling 

REFERENCES

  1. 1.
    Anderson, D.A., Tannehill, J.D., and Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, McGraw-Hill, 1984.Google Scholar
  2. 2.
    Arvanaghi, H., and Oskuei, N.N., Sharp-crested weir discharge coefficient, J. Civ. Eng. Urbanism, 2013, vol. 3, pp. 87–91.Google Scholar
  3. 3.
    Bhajantri, M.R., Eldho, T.I., and Deolalikar, P.B., Hydrodynamic modelling of flow over a spillway using a two-dimensional finite volume-based numerical model, Sadhana, 2006, vol. 31, pp. 743–754.CrossRefGoogle Scholar
  4. 4.
    Bhajantri, M.R., Eldho, T.I., and Deolalikar, P.B., Modeling hydrodynamic flow over spillway using weakly compressible flow equations, J. Hydraul. Res., 2007, vol. 45, pp. 844–852.CrossRefGoogle Scholar
  5. 5.
    Bhajantri, M.R., Eldho, T.I., and Deolalikar, P.B., Numerical investigation of the effects of sluice spillway roof profiles on the hydraulic characteristics, Int. J. Numer. Methods Fluids, 2008, vol. 57, pp. 839–859.CrossRefGoogle Scholar
  6. 6.
    Bravo, H.R. and Zheng, Y.H., Turbulent flow over step with rounded edges: experimental and numerical study, J. Hydraul. Eng., 2000, vol. 126, pp. 82–85.CrossRefGoogle Scholar
  7. 7.
    Brufau, P., Vazquez-Cendon, M.E., and Garcia-Navarro, P., A numerical model for the flooding and drying of irregular domains, Int. J. Numer. Methods Fluids, 2002, vol. 39, pp. 247–275.CrossRefGoogle Scholar
  8. 8.
    Cassidy, J.J., Irrational flow over spillways of finite height, J. Eng. Mech., 1965, vol. 91, pp. 155–173.Google Scholar
  9. 9.
    Davis, S.F., TVD Finite Difference Schemes and Artificial Viscosity, ICASE, 1984, Report no. 84–20.Google Scholar
  10. 10.
    Farsirotou, E.D. and Kotsopoulos, S.I., Free surface flow over river bottom sill: Experimental and numerical study, Environ. Process, 2015, vol. 2, pp. 133–139.CrossRefGoogle Scholar
  11. 11.
    Hager, H.W. and Schwalt, M., Broad-crested weir, J. Irrig. Drain. Eng., 1994, vol. 120, pp. 13–26.CrossRefGoogle Scholar
  12. 12.
    Hall, G.W., Analytical determination of discharge characteristics of broad-crested weirs using boundary layer theory, Proc. Inst. Civ. Eng., 1962, vol. 22, pp. 172–190.Google Scholar
  13. 13.
    Herrera-Granados, O., and Kostecki, S.W., Numerical and physical modeling of water flow over the ogee weir of the new Niedow barrage, J. Hydrol. Hydromech., 2016, vol. 64, pp. 67–74.CrossRefGoogle Scholar
  14. 14.
    Liang, D., Falconer, R.A., and Lin, B., Comparison between TVD–MacCormack and ADI-type solvers of the shallow water equations, Adv. Water Resour., 2006, vol. 29, pp. 1833–1845.CrossRefGoogle Scholar
  15. 15.
    Liang, D., Lin, B., and Falconer, R.A., Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme, Int. J. Numer. Methods Fluids, 2007, vol. 53, pp. 811–826.CrossRefGoogle Scholar
  16. 16.
    Liang, Q., and Borthwick, A.G.L., Adaptive quadtree simulation of shallow flows with wet–dry fronts over complex topography, Comput. & Fluids, 2009, vol. 38, pp. 221–234.CrossRefGoogle Scholar
  17. 17.
    Louaked, M. and Hanich, L., TVD scheme for the shallow water equations, J. Hydraul. Res., 1998, vol. 36, pp. 63–78.CrossRefGoogle Scholar
  18. 18.
    Lv, X., Zou, Q., and Reeve, D., Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method, Adv. Water Resour., 2011, vol. 34, pp. 1320–1334.CrossRefGoogle Scholar
  19. 19.
    MacCormack, R.W., The effect of viscosity in hypervelocity impact cratering, Proc. AIAA Hypervelocity Impact Conference, Cincinnati, USA, 1969.Google Scholar
  20. 20.
    Nash, J.E. and Sutcliffe, J.V., River flow forecasting through conceptual models. Part I-a. Discussion of principles, J. Hydrol., 1970, vol. 10, pp. 282–290.CrossRefGoogle Scholar
  21. 21.
    Ouyang, C., He, S., Xu, Q., Luo, Y., and Zhang, W., A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain, Comput, Geosci., 2013, vol. 52, pp. 1–10.CrossRefGoogle Scholar
  22. 22.
    Ouyang, C., He, S., and Xu, Q., MacCormack-TVD finite difference solution for dam break hydraulics over erodible sediment beds, J. Hydraul. Eng., 2015, vol. 141, pp. 06014026.CrossRefGoogle Scholar
  23. 23.
    Ramamurthy, A.S., Udoyara, S.T., and Rao, M.V.J., Characteristic of square-edged and round-nosed broad-crested weirs, J. Irrig. Drain. Eng., 1988, vol. 114, pp. 61–73.CrossRefGoogle Scholar
  24. 24.
    Rao, S.S., and Shukla, M.K., Characteristics of flow over weirs of finite crest width, J. Hydraul. Eng., 1971, vol. 97, pp. 1807–1816.Google Scholar
  25. 25.
    Rogers, B.D., Borthwick, A.G.L., and Taylor, P.H., Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver, J. Comput. Phys., 2003, vol. 192, pp. 422–451.CrossRefGoogle Scholar
  26. 26.
    Sabbagh-Yazdi, S.R., Mastorakis, N.E., and Zounemat-Kermani, M., Velocity profile over spillway by finite volume solution of slopping depth averaged flow, Proc. 2 nd IASME/WSEAS Int. Conference on Continuum Mech., 2007, Portoroz, Slovenia.Google Scholar
  27. 27.
    Serafeim, A., Avgeris, L., Hrissanthou, V., and Bellos, K., Experimental and numerical simulation of the flow over a spillway, Proc. 10 th World Congress on Water Resour. and Env. (EWRA), 2017, Athens, Greece.Google Scholar
  28. 28.
    Song, C.C.S., and Zhou, F., Simulation of free surface flow over spillway, J. Hydraul. Eng., 1999, vol. 125, pp. 959–967.CrossRefGoogle Scholar
  29. 29.
    Tracy, H.J., Discharge Characteristics of Broad-Crested Weirs, Geological Survey Circular 397, Washington, D.C., 1957.Google Scholar
  30. 30.
    Unami, K., Kawachi, T., Babar, M.M., and Itagaki, H., Two-dimensional numerical model of spillway flow, J. Hydraul. Eng., 1999, vol. 125, pp. 369–375.CrossRefGoogle Scholar
  31. 31.
    Valiani, A., and Begnudelli, L., Divergence form for bed slope source term in shallow water equations, J. Hydrauic. Eng., 2006, vol. 132, pp. 652–665.CrossRefGoogle Scholar
  32. 32.
    Wilmott, C.J., On the validation of models, Phys, Geogr., 1981, vol. 2, pp. 184–194.CrossRefGoogle Scholar
  33. 33.
    Woodburn, J.G., Tests on the broad-crested weirs, Trans. ASCE, 1932, vol. 96, pp. 387–408.Google Scholar
  34. 34.
    Xia, J., Falconer, R.A., Lin, B., and Tan, G., Modelling flood routing on initially dry beds with refined treatment of wetting and drying, Int. J. River Basin. Manag., 2010, vol. 8, pp. 225–243.Google Scholar
  35. 35.
    Xu, T., Jin, Y.C., Numerical study of the flow over broad-crested weirs by a mesh-free method. J. Irrig. Drain Eng., 2017, vol. 143, pp. 04017034.CrossRefGoogle Scholar
  36. 36.
    Yuce, M.I., Al-Babely, A.A.H., and Al-Dabbag, M.A., Flow simulation over oblique cylindrical weirs, Can. J. Civ. Eng., 2015, vol. 42, pp. 389–407.CrossRefGoogle Scholar
  37. 37.
    Zachoval, Z., Kneblova, M., Rousar, L., Rumann, J., and Sulc, J., Discharge coefficient of a rectangular sharp-edged broad-crested weir, J. Hydrol. Hydromech., 2014, vol. 62, pp. 145–149.CrossRefGoogle Scholar
  38. 38.
    Zhou, F., and Bhajantri, M.R., Numerical study of the effects of spillway crest shape on the distribution of pressure and discharge, Proc. 3 rd Int. Conference on Hydro-Science and Eng., Berlin, Germany, 1998.Google Scholar
  39. 39.
    Zhou, J.G., Causon, D.M., Ingram, D.M., and Mingham, C.G., The surface gradient method for the treatment of source terms in the shallow-water equations, J. Comput. Phys., 2001, vol. 168, pp. 1–25.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Civil Engineering, National Institute of Technology MeghalayaMeghalayaIndia

Personalised recommendations