Water Resources

, Volume 46, Issue 3, pp 422–426 | Cite as

Cesium-137 in Crimean Salt Waters

  • O. N. MiroshnichenkoEmail author
  • N. Yu. Mirzoeva
  • I. G. Sidorov
  • S. B. Gulin


The concentration of the technogenic radionuclide 137Cs was studied in different groups of salt lakes of Crimean Peninsula. It was established that one of the major sources of 137Cs input in them is the North Crimean Canal, which, up to 2014, had been delivering the Dnieper water with a high concentration of radionuclides of Chernobyl origin. Another source of 137Cs inflow is Black Sea water through its drainage and direct interaction with the coastal salt lakes of Crimea, in which a positive correlation was observed between 137Cs concentration and water salinity.


Crimea salt lakes 137Cs 



The results of marine studies used for comparative analysis in this article are obtained within the framework of the state task “Molismological and biogeochemical fundamentals of marine ecosystems homeostasis” (AAAA-A18-118020890090-2).


  1. 1.
    Aizenberg, M.M. and Kaganer, M.S., Resursy poverkhnostnykh vod SSSR (USSR Surface Water Resources), vol. 6., Ukraina i Moldaviya (Ukraine and Moldavia), no. 4. Krym (Crimea), Leningrad: Gidrometeoizdat, 1966.Google Scholar
  2. 2.
    Anufrieva, E.V., Shadrin, N.V., and Shadrina, S.N., History of studying the biodiversity of hypersaline Crimean water bodies, Arid. Ekosis., 2017, vol. 23, no. 1(70), pp. 64–71.Google Scholar
  3. 3.
    Bei, O.N., Proskurnin, V.Yu., and Gulin, S.B., Measuring 137Cs concentration by the intrinsic beta-radiation with the use of liquid-scintillation spectrometry, Radiokhimiya, 2016, vol. 58, no. 2, pp. 147–149.Google Scholar
  4. 4.
    Betenekov, N.D., Egorov, Yu.V., Kitaev, G.A., Popov, V.I., Puzako, V.D., and Cheremukhin, Yu.G., Method of sorbent production, USSR Inventor’s Certificate no. 457 248, 1972.Google Scholar
  5. 5.
    Gulin, S.B., Mirzoeva, N.Yu., Lazorenko, G.E., Egorov, V.N., Trapeznikov, A.V., Sidorov, I.G., Proskurnin, V.Yu., Popovichev, V.N., Bei, O.N., and Rodina, E.A., Present-day radioecological situation, associated with the regime of functioning of the North Crimean Canal, Radiats. Biol., Radioekol., 2016, vol. 56, no. 6, pp. 1–8.Google Scholar
  6. 6.
    Gulina, L.V. and Gulin, S.B., Natural and technogenic radionuclides in the ecosystem of the salt Koyashskoe Lake (Southeastern Crimea), Mor. Ekol. Zhurn., 2011, vol. 1, no. 1, pp. 19–25.Google Scholar
  7. 7.
    Lazorenko, G.E., Molismological study of the aquatic ecosystem of the North Crimean Canal, Chteniya pamyati N.V. Timofeeva-Resovskogo (Readings in the Memory of N.V. Timofeev-Resovskii), Sevastopol: Inst. Biol. Yuzh. Morei, 2000.Google Scholar
  8. 8.
    Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Spravochnik po neorganicheskoi khimii (Textbook on Inorganic Chemistry), Moscow: Khimiya, 1987.Google Scholar
  9. 9.
    Lisovskii, A.A., Novik, V.A., Timchenko, Z.V., and Mustafaeva, Z.R., Poverkhnostnye Vodnye ob’’ekty Kryma. Spravochnik (Surface Water Bodies of Crimea. Textbook), Simferopol’: Reskomvodkhoz ARK, 2004.Google Scholar
  10. 10.
    Matishov, G.G. and Bufetova, M.V., Sr-90 and Cs-137 in the Sea of Azov after the Chernobyl Accident, Dokl. Earth Sci., 2002, vol. 383A, pp. 318–320.Google Scholar
  11. 11.
    Polikarpov, G.G., Radioekologiya morskikh organizmov (Radioecology of Marine Organisms), Moscow: Atomizdat, 1964.Google Scholar
  12. 12.
    Polikarpov, G.G., Lazorenko, G.E., Tereshchenko, N.N., and Korotkov, A.A., The contribution of the irrigation system of the North Crimean Canal to radionuclide transport of cezium, plutonium, and americium with Dnieper water into Karkinitskii Bay, the Black Sea, Radioekologicheskii otklik Chernogo morya na chernobyl’skuyu avariyu (Radioekological Response of the Black Sea to Chernobyl Accident), Polikarpov, G.G. and Egorov, V.N., Eds., Sevastopol: EKOSI-Gidrofizika, 2008.Google Scholar
  13. 13.
    Plyushchev, V.E. and Stepin, B.D., Analiticheskaya khimiya rubidiya i tseziya (Analytical Chemistry of Rubidium and Cesium), Moscow: Nauka, 1975.Google Scholar
  14. 14.
    Gulin, S.B., Mirzoyeva, N.Yu., Egoron, V.N., Polikarpov, G.G., Sidorov, I.G., and Proskurnin, V.Yu., Secondary radioactive contamination of the Black Sea after Chernobyl accident: recent levels, pathways and trends, J. Environ. Radioact., 2013, vol. 124, pp. 50–56.CrossRefGoogle Scholar
  15. 15.
    Mirzoyeva, N., Gulin, S., Plotisina, O., Stetsuk, A., Arkhipova, S., Korkishko, N., and Eremin, O., Radiochemoecological monitoring of the salt lakes of the Crimea, Acta Geologica Sinica (English Edition), 2014, vol. 88, Suppl. 1, pp. 155–157.CrossRefGoogle Scholar
  16. 16.
    Mirzoyeva, N., Gulina, L., Gulin, S., Plotisina, O., Stetsuk, A., Arkhipova, S., Korkishko, N., and Eremin, O., Radionuclides and mercury in the salt lakes of the Crimea, Chin. J. Oceanol. Limnol., 2015, vol. 33, no. 6, pp. 1413–1425.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. N. Miroshnichenko
    • 1
    Email author
  • N. Yu. Mirzoeva
    • 1
  • I. G. Sidorov
    • 1
  • S. B. Gulin
    • 1
  1. 1.The A.O. Kovalevsky Institute of Marine Biological Research of RAS, SevastopolRussia

Personalised recommendations