Advertisement

Water Resources

, Volume 45, Supplement 1, pp 128–134 | Cite as

Assessing the Sensitivity of a Model of Runoff Formation in the Ussuri River Basin

  • Yu. G. MotovilovEmail author
  • A. N. Bugaets
  • B. I. Gartsman
  • L. V. Gonchukov
  • A. S. Kalugin
  • V. M. Moreido
  • Z. A. Suchilina
  • E. A. Fingert
Article
  • 10 Downloads

Abstract

A physically based model of runoff formation with daily resolution has been developed for the upper part of the Ussuri basin with an area of 24400 km2 based on ECOMAG hydrological modeling platform. Two versions of the hydrological model have been studied: (1) a crude version with the spatial schematization of the drainage area and river network based on DEM 1 × 1 km with the use of soil and landscape maps at a scale of 1: 2500000 and (2) a detailed version with DEM 80 × 80 m and soil and landscape maps of the scale of 1: 100000. Each version of the model has been tested for two variants of meteorological inputs: (1) meteorological forcing data (temperature, air humidity, precipitation) at eight weather stations and (2) with the involvement of additional data on precipitation collected at 15 gages in the basin. The model has been calibrated and validated over a 34-year period (1979–2012) with the use of runoff data for the Ussuri R. and its tributaries. The results of numerical experiments for assessing the sensitivity of model hydrological response to the spatial resolution of land surface characteristics and the density of precipitation gaging stations are discussed.

Keywords

runoff formation model sensitivity precipitation gaging network land surface characteristics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloschl, G., Scaling in hydrology, Hydrol. Processes, 2001, vol. 15, pp. 709–711.CrossRefGoogle Scholar
  2. 2.
    Bugaets, A.N., Pschenichnikova, N.F., Tereshkina, A.A., Krasnopeev, S.M., Gartsman, B.I., Golodnaya, O.M., and Oznobikhin, V.I. Digital soil map of the Ussuri River basin. Eurasian Soil Sci., 2017, vol. 50, no. 8, pp. 907–916.CrossRefGoogle Scholar
  3. 3.
    Bugaets, A., Gartsman, B., Gelfan, A., Motovilov, Y., Sokolov, O., Gonchukov, L., Kalugin, A., Moreido, V., Suchilina, Z., and Fingert, E., The integrated system of hydrological forecasting in the Ussuri River basin based on the ECOMAG model, Geosciences, 2018, no. 8, p. 5.CrossRefGoogle Scholar
  4. 4.
    Gartsman, B.I. and Gubareva, T.S., Forecast of the rainfall flood hydrograph on the Far East rivers, Russ. Meteorol. Hydrol., 2007, vol. 32, no. 5, pp. 328–335.CrossRefGoogle Scholar
  5. 5.
    Fu, S., Sonnenborg, T. O., Jensen, K. H., and He, X., Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model, Vadose Zone J., 2011, no. 10, vol. 1, pp. 25–36. doi 10.2136/vzj2009.0186CrossRefGoogle Scholar
  6. 6.
    Kuchment, L.S., Demidov, V.N., and Motovilov, Yu.G., Formirovanie rechnogo stoka: fisiko-matematicheskie modeli (River Runoff Formation: Physically Based Models), Moscow, Nauka, 1983.Google Scholar
  7. 7.
    Mendoza, P.A., Mizukami, N., Ikeda, K., Clark, M.P., Gutmann, E. D., Arnold, J. R., Brekke, L. D., and Rajagopalan, B., Effects of different regional climate model resolution and forcing scales on projected hydrologic changes, J. Hydrol., 2016, no. 541, pp. 1003–1019. doi 10.1016/j.jhydrol.2016.08.010CrossRefGoogle Scholar
  8. 8.
    Moriasi, D. N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R. D., and Veith, T.L., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations, Trans. ASABE, 2007, vol. 50, no. 3, pp. 885–900.CrossRefGoogle Scholar
  9. 9.
    Motovilov, Yu.G., Hydrological simulation of river basins at different spatial scales: 1. Generalization and averaging algorithms, Water Resour., 2016, vol. 43, no. 3, pp. 429–437.CrossRefGoogle Scholar
  10. 10.
    Motovilov, Yu.G., Hydrological simulation of river basins at different spatial scales: 2. Test results, Water Resour., 2016, vol. 43, no. 5, pp. 743–753.CrossRefGoogle Scholar
  11. 11.
    Motovilov, Yu.G., Modeling fields of river runoff (a case study for the Lena River Basin), Russian Meteorol. Hydrol., 2017, vol. 42, no. 2, pp. 121–128CrossRefGoogle Scholar
  12. 12.
    Motovilov, Yu.G., Gottschalk, L., Engeland, K., and Rodhe, A., Validation of a distributed hydrological model against spatial observation, Agric. For. Meteorol., 1999, nos. 98–99, pp. 257–277.CrossRefGoogle Scholar
  13. 13.
    Ochoa-Rodriguez, S., Wang, L.-P., Gires, A., Pina, R.D., Reinoso-Rondinel, R., Bruni, G., Ichiba, A., Gaitan, S., Cristiano, E., van Assel, J., Kroll, S., Murla-Tuyls, D., Tisserand, B., Schertzer, D., Tchiguirinskaia, I., Onof, C., Willems, P., and Veldhuis, M.-C., Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation. J. Hydrol., 2015, vol. 531, pp. 389–407.CrossRefGoogle Scholar
  14. 14.
    Zhao, G.J., Hormann, G., Fohrer, N., Gao, J.F., Impacts of spatial data resolution on simulated discharge, a case study of Xitiaoxi catchment in South China., Adv. Geosci., 2009, vol. 21, pp. 131–137.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. G. Motovilov
    • 1
    Email author
  • A. N. Bugaets
    • 2
    • 3
  • B. I. Gartsman
    • 1
    • 3
  • L. V. Gonchukov
    • 3
  • A. S. Kalugin
    • 1
  • V. M. Moreido
    • 1
  • Z. A. Suchilina
    • 1
  • E. A. Fingert
    • 1
    • 4
  1. 1.Water Problems InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Pacific Institute of Geography, Far East BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Far Eastern Regional Hydrometeorological InstituteVladivostokRussia
  4. 4.Faculty of GeographyMoscow State UniversityMoscowRussia

Personalised recommendations