Advertisement

Water Resources

, Volume 45, Supplement 1, pp 11–17 | Cite as

Numerical Modeling of Non-Uniform Sediment Transport in River Channels

  • A. I. AleksyukEmail author
  • V. V. Belikov
  • N. M. Borisova
  • T. A. Fedorova
Article
  • 6 Downloads

Abstract

The mathematical model for simulating deformations of river channels composed of heterogeneous alluvium has been developed. The combination of shallow water equations and a three-layer model is used to describe the fluid flow and non-uniform sediment transport in bed (layer II) and suspended (layer III) loads. Changes in the fractional composition of unerodible bottom sediments (layer I) are also considered. The algorithm provides mass conservation for each fraction. The comparison of calculations results and experimental data (hydraulic washing of a desilting basin from sediments and armoring processes in heterogeneous soils) confirms the operability of the model. The model is applied to calculate the silting and hydraulic washes of the reservoir of a hydroelectric power station on a mountain river.

Keywords

numerical modeling channel deformations heterogeneous sediments armoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksyuk, A.I., Belikov, V.V., Simulation of shallow water flows with shoaling areas and bottom discontinuities, Comput. Math. Math. Phys., 2017, vol. 57, no. 2, pp. 318–339. doi 10.1134/S0965542517020026CrossRefGoogle Scholar
  2. 2.
    Aleksyuk, A.I., Belikov, V.V., STREAM 2D CUDA software package for calculating currents, bottom deformations and transfer of contaminations in open streams using CUDA technology (on NVIDIA graphics processors), Certificate of state registration of a computer program № 2017660266, 2017.Google Scholar
  3. 3.
    Aleksyuk, A.I., Belikov, V.V., The uniqueness of the exact solution of the Riemann problem for the shallow water equations with discontinuous bottom, submitted for publication in J. Comput. Phys., 2018.Google Scholar
  4. 4.
    Belikov, V.V., Borisova, N.M., Gladkov, G.L., Mathematical model of sediment transport for calculating the logging of dredging slots and channel quarries, Zh. Univ. Vodnykh Kommunikatsiy, 2010, vol. 6, pp. 105–113.Google Scholar
  5. 5.
    Belikov, V.V., Vasil’eva, E.S., Prudovskii, A.M., Numerical modeling of a breach wave through the dam at the Krasnodar reservoir, Power Technol. Eng., 2010, vol. 44, no. 4, pp. 269–278. doi 10.1007/s10749-010-0176-2Google Scholar
  6. 6.
    Cao, Z., Pender, G., Wallis, S., Carling, P., Computational dam-break hydraulics over erodible sediment bed, J. Hydraul. Eng., 2004, vol. 130, pp. 689–703. doi 10.1061/(ASCE)0733-9429(2004)130:7(689)CrossRefGoogle Scholar
  7. 7.
    Hasegawa, K., Hydraulic research on planimetric forms, bed topographies and flow in alluvial rivers, Ph.D. Dissertation, Sapporo: Hokkaido Univ., 1984, p. 128.Google Scholar
  8. 8.
    Klaven, A.B., Kopaliani, Z.D., Eksperimental’nyye issledovaniya i gidravlicheskoye modelirovaniye rechnykh potokov i ruslovogo protsessa (Experimental Studies and Hydraulic Modeling of River Flows and Channel Processes), St. Petersburg: Nestor-Istoriya, 2011, pp. 295–308.Google Scholar
  9. 9.
    Knoroz, V.S., Natural channel armoring, formed by heterogeneous material, Izv. VNIIG, 1962, vol. 10, pp. 21–51.Google Scholar
  10. 10.
    Militeev, A.N., Bazarov, D.R., Mathematical model for calculating two-dimensional (in plan) deformations of river channels, Vodn. Resur., 1999, vol. 26, no. 1, pp. 22–26.Google Scholar
  11. 11.
    Qian, H., Cao, Z., Pender, G., Liu, H., Hu, P., Wellbalanced numerical modelling of non-uniform sediment transport in alluvial rivers, International Journal of Sediment Research, 2015, vol. 30, no. 2, pp. 117–130. doi 10.1016/j.ijsrc.2015.03.002CrossRefGoogle Scholar
  12. 12.
    Shimizu, Y., A method for simultaneous computation of bed and bank deformation of a river, River Flow 2002 (Proc. Int’l Conf. on Fluvial Hydraulics, Louvain-La- Neuve, Belgium, 2002), Lisse, The Netherlands: Swets & Zeltinger, 2002, pp. 793–801.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. I. Aleksyuk
    • 1
    • 2
    Email author
  • V. V. Belikov
    • 2
  • N. M. Borisova
    • 2
  • T. A. Fedorova
    • 2
  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  2. 2.Water Problems InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations