Water Resources

, Volume 45, Issue 4, pp 578–588 | Cite as

Anthropogenic Processes in Continental Waters of Arctic Regions and Criteria for Their Assessment

  • T. I. Moiseenko
Hydrochemistry, Hydrobiology: Environmental Aspects


Development features of anthropogenic processes in continental waters in the Arctic Basin, including eutrophication, acidification, and toxic pollution, are characterized. The major changes in the ecosystems and the formation periods of hazardous situations are demonstrated. Criteria are suggested for the diagnostics of unfavorable processes and the need of more stringent water quality standards is substantiated.


Arctic Basin continental waters eutrophication acidification toxic pollution assessment criteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alimov, A.F., Elementy teorii funktsionirovaniya vodnykh ekosistem (Elements of the Theory of Functioning of Aquatic Ecosystems), St. Petersburg: Nauka, 2000.Google Scholar
  2. 2.
    Bashkin, V.N., Assessing the level of risk under critical loads of pollutants on ecosystems, Geogr. Prir. Resur., 1999, no. 1, pp. 35–37.Google Scholar
  3. 3.
    Venitsianov, E.V. and Lepikhin, A.P., Fiziko-khimicheskie osnovy modelirovaniya migratsii i transformatsii tyazhelykh metallov v prirodnykh vodakh (Physicochemical Principles of Modeling the Migration and Transformation of Heavy Metals in Natural Waters), Yekaterinburg: Ros. Nauch.-Issled. Inst. Vod. Khoz., 2002.Google Scholar
  4. 4.
    Gashkina, N.A., Zonal features of the distribution of biogenic elements and organic matter in small lakes, Water Resour., 2011, vol. 38, no. 3, pp. 352–371.CrossRefGoogle Scholar
  5. 5.
    State Reports “On the Conditions and Protection of the Environment in the Russian Federation,” Moscow: Minprirody, 2010–2016.
  6. 6.
    Moiseenko, T.I., Vodnaya ekotoksikologiya: fundamental’nye i prikladnye aspekty (Water Toxicology: Basic and Applied Aspects), Moscow: Nauka, 2009.Google Scholar
  7. 7.
    Moiseenko, T.I., Sandimirov, S.S., and Kudryavtseva, L.P., Eutrophication of surface water in the arctic region, Water Resour., 2001, no. 3, pp. 307–316.CrossRefGoogle Scholar
  8. 8.
    Moiseenko, T.I., Effects of acidification on aquatic ecosystems, Russ. J. Ecol., 2005, no. 2, pp. 93–102.CrossRefGoogle Scholar
  9. 9.
    Moiseenko, T.I., Gashkina, N.A., and Dinu, M.I., Zakislenie vod: uyazvimost' i kriticheskie nagruzki (Water Acidification: Vulnerability and Critical Loads), Moscow: URRS, 2017.Google Scholar
  10. 10.
    Moiseenko, T.I., Gashkina, N.A., Kudryavtseva, L.P., Bylinyak, Yu.A., and Sandimirov, S.S., Zonal features of the formation of water chemistry in small lakes in European Russia, Water Resour., 2006, vol. 33, no. 2, pp. 144–162.CrossRefGoogle Scholar
  11. 11.
    Moiseenko, T.I., Dauval’ter, V.A., and Rodyushkin, I.V., Mechanisms of the cycle of natural and human–introduced metals in surface waters of the Arctic Basin, Water Resour., 1998, no. 2, pp. 212–224.Google Scholar
  12. 12.
    Nablyudaemye i ozhidaemye izmeneniya klimata v Rossii: temperatura vozdukha (Observed and Anticipated Climate Changes in Russia: Air Temperature), Gruza, G.V. and Ran’kova, E.Yu., Eds., Obninsk: Inst. Glob. Klim. Ekol., Ross. Akad. Nauk, 2012.Google Scholar
  13. 13.
    Nikanorov, A.M. and Bryzgalo, V.A., Presnovodnye ekosistemy v impaktnykh raionakh Rossii (Freshwater Ecosystems in Impact Regions of Russia), Rostov-on- Don: NOK, 2006.Google Scholar
  14. 14.
    Perechen’ rybokhozyaistvennykh normativov predel’nodopustimykh kontsentratsii (PDK) i orientirovochno bezopasnykh urovnei vozdeistviya (OBUV) vrednykh veshchestv dlya vody vodnykh ob”ektov, imeyushchikh rybokhozyaistvennoe znachenie (List of Fishery-Related Standards of Maximal Allowable Concentrations (MAC) and Relatively Safe Impact Levels (RSIL) of Hazardous Substances in Water Bodies of Significance for Fishery), Moscow: Vseros. Nauch.-Issled. Inst. Ryb. Khoz. Okeanogr., 2010.Google Scholar
  15. 15.
    Rodyushkin, I.V., Main regularities in metal distributions by forms in the surface waters of the Kola North, Cand. Sci. (Geogr.) Dissertation, St. Petersburg: SPb Nauch. Issled. Inst. Okeanogr., Ross. Akad. Nauk, 1995.Google Scholar
  16. 16.
    Henderson-Sellers, B. and Markland, H.R., Decaying Lakes, Chichester: Wiley, 1987.Google Scholar
  17. 17.
    Khublaryan, M.G. and Moiseenko, T.I., Water quality deterioration in the Extreme North, Vestn. Ross. Akad. Nauk, 2000, vol. 70, no. 4, pp. 307–313.Google Scholar
  18. 18.
    Yakovlev, V.A., Assessment of the degree of surface water acidification by the zoobenthic reaction in the northeastern part of Fennoscandia, Water Resour., 1998, vol. 25, no. 2, pp. 225–231.Google Scholar
  19. 19.
    Adams, S.M. and Ryon, M.G., A comparison of health assessment approaches for evaluating the effects of contaminant- related stress on fish populations, J. Aquat. Ecosyst. Health, 1994, vol. 3, no. 15, pp. 15–25.CrossRefGoogle Scholar
  20. 20.
    Arctic Freshwater System in a Changing Climate, WCRP CliC Project. AMAP. IASC CliC/AMAP/ IASC. 2016.
  21. 21.
    Arctic pollution issues: a state of the arctic environment report, Oslo: AMAP, 1997.Google Scholar
  22. 22.
    Clark, J.M., Bottrell, S.H., Evans, C.D., et al., The importance of the relationship between scale and process in understanding long-term DOC dynamics, AMBIO, no. 13, pp. 2768–2675.Google Scholar
  23. 23.
    Henriksen, A., Porsch, M., Hulberg, H., and Lien, L., Critical loads of acidity for surface waters—can the ANC limit be considered variable?, Water Air Soil Pollut., 1995, no. 85, pp. 2419–2424.CrossRefGoogle Scholar
  24. 24.
    Henriksen, A., Kamari 1., Posch, M., and Wilander, A., Critical loads of acidity: Nordic surface waters, AMBIO, 1992, no. 21, pp. 356–363.Google Scholar
  25. 25.
    Henriksen, A., Skjelvåle, B.L., Mannio, J., et al., Northern European lake survey, 1995. Finland, Norway, Sweden, Denmark, Russian Kola, Russian Karelia, Scotland and Wales, AMBIO, 1998, vol. 27, no. 2, pp. 80–91.Google Scholar
  26. 26.
    Lithner, G., Quality Criteria for Lakes and Watercourses. Background Report 2—Metals, Stockholm: Swedish EPA Rep. 3628, 1989.Google Scholar
  27. 27.
    Moiseenko, T.I., A fate of metals in arctic surface waters. Method for defining critical levels, Sci. Total Environ., 1999, no. 31, pp. 19–39.CrossRefGoogle Scholar
  28. 28.
    Moiseenko, T.I., Skjelkvale, B.L., Gashkina, N.A., et al., Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: effects of air pollution and climate change, Applied Geochem., 2013, no. 28, pp. 69–79.CrossRefGoogle Scholar
  29. 29.
    Moiseenko, T.I., Voinov, A.A., Megorsky, V.V., et al., Ecosystem and human health assessment to define environmental management strategies: the case of longterm human impacts on an Arctic lake, Sci. Tot. Environ., 2006, vol. 369, pp. 1–20.CrossRefGoogle Scholar
  30. 30.
    Rast, W. and Lee, G., Relationship between summary mean and maximum chlorophyll-a concentration in lakes, Environ. Sci. Technol., 1979, no. 13, pp. 869–870.CrossRefGoogle Scholar
  31. 31.
    Vollenweider, R.A., Scientific fundamentals of the eutrophycation partially reference to nitrogen and phosphorus as factors in eutrophycation, Tech. Rep. Organ. Economy Cooper. Devel., 1968, vol. 27.Google Scholar
  32. 32.
    Whitfield, A.K. and Elliott, M., Fish as indicator of environmental and ecological changes within estuaries: a review of progress and suggestions for the future, J. Fish. Biol., 2002, vol. 61, no. 4, pp. 229–250.CrossRefGoogle Scholar
  33. 33.
    Wong, P.T.S. and Dixon, D.G., Bioassessment of water quality, Environ. Toxicol. Water Qual., 1995, vol. 10, pp. 320–345.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations