Water Resources

, Volume 45, Issue 4, pp 479–489 | Cite as

Sediment Yield of Kamchatka Krai Rivers into the Pacific Ocean and the Seas of Bering and Okhotsk

  • L. V. Kuksina
  • N. I. Alekseevskii
Water Resources and the Regime of Water Bodies


Sediment yield of Kamchatka Krai rivers into the Pacific Ocean and the seas of Bering and Okhotsk, is evaluated, including that from the drainage basins that are not covered by regular observations. Regression dependences of specific suspended sediment yield (SSSY) on factors determining it were constructed for erosion regions identified in Kamchatka Krai. The total average many-year yield of suspended sediments of Kamchatka Krai rivers into the Pacific is 11.4 × 106 t/year, 73.9% of which is transported by rivers of the eastern coast and 26.1%, by those of the western coast. Among other factors, such distribution is attributed to the location of the majority of volcanoes on Kamchatka eastern coast. About one third of all sediments transported from Kamchatka Krai territory is discharged by the two largest rivers in the region, i.e., the Penzhina and Kamchatka.


Kamchatka Krai rivers suspended sediment yield regression equation specific suspended sediment yield suspended sediment concentration Pacific Ocean Bering Sea Sea of Okhotsk active volcanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseevskii, N.I., Formirovanie i dvizhenie rechnykh nanosov (Formation and Motion of Fluvial Sediments), Moscow: Geogr. fak. Mosk. Gos. Univ., 1998.Google Scholar
  2. 2.
    Bobrovitskaya, N.N., Dependence of the average longterm sediment yield on physiographic factors in European Russia rivers, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1971, no. 191, pp. 68–84.Google Scholar
  3. 3.
    Voda Rossii. Nauchno-Populyarnaya entsiklopediya. Kamchatka (Water of Russia: Popular-Scientific Encyclopedia. Kamchatka).
  4. 4.
    Goretskaya, Z.A., Regularities in the distribution of sediment yield over Ukraine territory, Tr. Ukr.Nauch. Issled. Gidrovet. Inst., 1974, no. 127, pp. 122–132.Google Scholar
  5. 5.
    Dedkov, A.P. and Mozzherin, V.I., Eroziya i stok nanosov na Zemle (Erosion and Sediment Runoff on the Earth), Kazan: Izd. Kaz. Gos. Univ., 1984.Google Scholar
  6. 6.
    Evstigneev, V.M., Rechnoi stok i gidrologicheskie raschety (River Runoff and Hydrological Calculations), Moscow: Mosk. Gos. Univ., 1990.Google Scholar
  7. 7.
    Kuksina, L.V. and Alekseevkii, N.I., Erosion zoning of Kamchatka Krai territory, Geogr. Prir. Res., 2016, no. 2, pp. 132–141.Google Scholar
  8. 8.
    Kuksina, L.V. and Chalov, S.R., The suspended sediment discharge of the rivers running along territories of contemporary volcanism in Kamchatka, Geogr. Nat. Resour., 2012, no. 1, pp. 67–73.CrossRefGoogle Scholar
  9. 9.
    Lisitsyna, K.N., Sediment yield in Siberia, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1974, no. 210, pp. 48–72.Google Scholar
  10. 10.
    Lopatin, G.V., Suspended load zones of rivers of Siberia and Far East, Izv. Vses. Geogr. Obshch., 1955, vol. 87, no. 1, pp. 23–31.Google Scholar
  11. 11.
    Natsional'nyi atlas Rossii (National Atlas of Russia), vol. 2.Priroda. Ekologiya (Nature. Ecology), Moscow: Min. Transp RF.Feder. Agent. Geod. Kartogr., 2007.Google Scholar
  12. 12.
    Reki i ozera mira. Entsiklopediya (Rivers and Lakes of the World), Moscow: Entsiklopediya, 2012.Google Scholar
  13. 13.
    Resursy poverkhnostnykh vod SSSR (USSR Surface Water Resources), Vol. 20, Kamchatka (Kamchatka), Leningrad: Gidrometeoizdat, 1973.Google Scholar
  14. 14.
    Stok nanosov, ego izuchenie i geograficheskoe raspredelenie (Sediment Runoff, Its Study and Geographic Distribution), Karaushev, A.V., Ed., Leningrad: Gidrometeoizdat, 1977.Google Scholar
  15. 15.
    Tkacheva, L.G., Suspended sediment discharge in the Central Asia, Tr. Gl. Geofiz. Obshch. im. A.I. Voeikova, 1974, no. 210, pp. 73–81.Google Scholar
  16. 16.
    Fiziko-geograficheskii atlas mira (World Physiographic Atlas), Moscow: Izd. Akad. Nauk SSSR i Gos. Uupr. Geod. Kart., 1964.Google Scholar
  17. 17.
    Khalafyan, A.A., Statistica 6.Statisticheskii analiz dannykh (Statistica 6._Statistical Data Analysis), Moscow: Binom-Press, 2010.Google Scholar
  18. 18.
    Khristoforov, A.V., Specifics of the problem of forecasting hydrological characteristics by regression equations, Meteorol. Gidrol., 1975, no. 11, pp. 72–80.Google Scholar
  19. 19.
    Khristoforov, A.V., Teoriya veroyatnostei i matematicheskaya statistika (Probability Theory and Mathematical Statistics), Moscow: Mosk. Gos. Univ., 1988.Google Scholar
  20. 20.
    Khristoforov, A.V., Teoriya sluchainykh protsessov v gidrologii (Theory of Random Processes in Hydrology), Moscow: Mosk. Gos. Univ., 1994.Google Scholar
  21. 21.
    Shamov, G.I., Sediment yield in the USSR, Tr. GPI GUGM, no. 20 (79).Google Scholar
  22. 22.
    Bobrovitskaya, N.N., Long-term variations in mean erosion and sediment yield from the rivers of the former Soviet Union, IAHS Publ., 1996, no. 236, pp. 32–39.Google Scholar
  23. 23.
    Dadson, S.J., Hovious, N., Chen, H., Dade, W.B., Lin, J., Hsu, M., Lin, C., Horng, M., Chen, T., Milliman, J., and Stark, C.P., Earthquake-triggered increase in sediment delivery from an active mountain belt, Geol., 2004, pp. 733–736.Google Scholar
  24. 24.
    Davila, N., Capra, L., Gavilanes-Ruiz, J.C., Varley, N., Norini, G., and Angel Gómez Vazquez, Recent lahars at Volcán de Colima (Mexico): Drainage variation and spectral classification, J. Volcanol. Geothermal Res., 2007, pp. 127–141.Google Scholar
  25. 25.
    Dedkov, A.P. and Gusarov, A.V., Suspended sediment yield from continents into the World Ocean: spatial and temporal changeability, Sediment Dynamics and the Hydromorphology of Fluvial Systems. IAHS Publ., 2006, no. 306, pp. 3–11.Google Scholar
  26. 26.
    Hayes S.K., Montgomery D.R., Newhall C.G. Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo, Geomorphol., 2002, no. 45, pp. 211–224.Google Scholar
  27. 27.
    Kuksina, L.V. and Alexeevsky, N.I. Spatial and temporal variability of suspended sediment yield in the Kamchatka Krai, Russian Federation, Sediment Dynamics from the Summit to the Sea. IAHS Publ., 2014. 367, pp. 304–311.Google Scholar
  28. 28.
    Milliman, J.D. and Farnsworth, K.L. River discharge to the coastal ocean: a global synthesis, Cambridge: Cambridge Univ. Press, 2013.Google Scholar
  29. 29.
    Nichols, G. Sedimentology and Stratigraphy, Wiley-Blackwell. 2009.Google Scholar
  30. 30.
    Sediment transport in aquatic environments, Andrew, J. and Manning, J., Eds., InTech, 2011.Google Scholar
  31. 31.
    Statistical methods in the Atmospheric Sciences, Dmowska, R., Hartman, D., Rossby, H.T., Eds., Int. Geoph. Ser. 2011. 100.Google Scholar
  32. 32.
    Syvitski, J.P.M., Vorosmarty, C.J., Kettner A.J., and Green P., Impact of humans on the flux of terrestrial sediment to the Global Coastal Ocean, Sci., 2005, vol. 308, pp. 376–380.CrossRefGoogle Scholar
  33. 33.
    Tukey, J.W., Exploratory Data Analysis, Reading, Mass.: Addison-Wesley. 1977.Google Scholar
  34. 34.
    Walling, D.E. and Webb, B.W., Erosion and sediment yield: a global overview, Erosion and Sediment Yield: Global and Regional Perspectives, IAHS Publ., 1996. 236, pp. 3–19.Google Scholar
  35. 35.
    Wischmeier, W.H. and Smith, D.D., Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, USDA-Agric. Handbook no. 537._Washington, DC,1978.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of GeographyMoscow State UniversityMoscowRussia

Personalised recommendations