Water Resources

, Volume 44, Issue 3, pp 399–416 | Cite as

Assessment of runoff, water and sediment quality in the Selenga River basin aided by a web-based geoservice

  • Daniel KartheEmail author
  • Sergey Chalov
  • Vsevolod Moreido
  • Margarita Pashkina
  • Anna Romanchenko
  • Gunsmaa Batbayar
  • Andrei Kalugin
  • Katja Westphal
  • Marcus Malsy
  • Martina Flörke
Water Resources and the Regime of Water Bodies


The Selenga River is the main artery feeding Lake Baikal. It has a catchment of ~450000 km² in the boundary region between Northern Mongolia and Southern Siberia. Climate, land use and dynamic socioeconomic changes go along with rising water abstractions and contaminant loads originating from mining sites and urban wastewater. In the future, these pressures might have negative impacts on the ecosystems of Lake Baikal and the Selenga River Delta, which is an important wetland region in itself and forms the last geobiochemical barrier before the Selenga drains into Lake Baikal. The following study aims to assess current trends in hydrology and water quality in the Selenga-Baikal basin, identify their drivers and to set up models (WaterGAP3 framework and ECOMAG) for the prediction of future changes. Of particular relevance for hydrological and water quality changes in the recent past were climate and land use trends as well as contaminant influx from mining areas and urban settlements. In the near future, additional hydrological modifications due to the construction of dams and abstractions/water diversions from the Selenga’s Mongolian tributaries could lead to additional alterations.


Selenga river system Lake Baikal water quality assessment transboundary rivers geodatabase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcamo, J., Dö ll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S, Development and testing of the WaterGAP 2 global model of water use and availability, Hydrol. Sci. J., 2003, vol. 48, no. 3, pp. 317–337.CrossRefGoogle Scholar
  2. 2.
    Altansukh, O., Whitehead, P., and Bromley, J, Spatial patterns and temporal trends in the water quality of the Tuul River in Mongolia, Energy Environ. Res., 2012, vol. 2, no. 1, pp. 62–78.CrossRefGoogle Scholar
  3. 3.
    Avlyush, S., Effects of Surface Gold Mining on Macroinvertebrate Communities. A Case Study in River Systems in the North-East of Mongolia, Saarbrücken, Germany: Lambert Acad. Publ., 2011.Google Scholar
  4. 4.
    Bartholomé, E. and Belward, A.S., GLC2000: A new approach to global land cover mapping from Earth observation data, In. J. Remote Sensing, 2005, vol. 26, no. 9, pp. 1959–1977.CrossRefGoogle Scholar
  5. 5.
    Batbayar, G., Arsenic Content in Water Samples of Mongolia: Using an Arsolux Test Kit Based on Bioreporter, Ulaanbaatar, Mongolia: Inst. Geography, National Univ. Mongolia, 2012.Google Scholar
  6. 6.
    Batbayar, G., Karthe, D., Pfeiffer, M., von Tümpling, W., and Kappas, M., Influence of urban settlement and mining activities on surface water quality in northern Mongolia, in Water and Environment in the Selenga-Baikal Basin: International Research Cooperation for an Ecoregion of Global Relevance, Karthe, D., Chalov, S., Kasimov, N., and Kappas, M., Esd., Stuttgart: Ibidem,2015, pp. 73–86.Google Scholar
  7. 7.
    Batuev, A.R., Beshentsev, A.N., Bogdanov, V.N., Dorjgotov, D., Korytny, L.M., and Plyusnin, V.M, Ecological atlas of the Baikal basin: Cartographic innovation, Geogr. Nat. Resour., 2015, vol. 36, no. 1, pp. 1–12.CrossRefGoogle Scholar
  8. 8.
    Brumbaugh, W.G., Tillitt, D.E., May, T.W., Javzan, C.H., and Komov, V.T, Environmental survey in the Tuul and Orkhon river basins of northcentral Mongolia, 2010: Metals and other elements in streambed sediment and floodplain soil, Environ. Monit. Assess., 2013, no. 185, pp. 8991–9008.Google Scholar
  9. 9.
    Central Pollution Control Board (CPCB): Water Quality Criteria 2007–2008. Water_Quality_Criteria.php. Cited February 17, 2016.Google Scholar
  10. 10.
    Chalov, S.R., Jarsjö, J., Kasimov, N., Romanchenko, A., Pietron, J., Thorslund, J., and Belozerova, E, Spatiotemporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia, Environ. Earth Sci., 2015, vol. 73, no. 2, pp. 663–680.CrossRefGoogle Scholar
  11. 11.
    Chalov, S.R., Thorslund, J., Kasimov, N., Nittrouer, J., Iliyecheva, E., Pietron, J., Shinkareva, G., Lychagin, M., Aybullatov, D, Kositky. A., Tarasov, M., Akhtman, Y., Garmaev, E., Karthe, D., and Jarsjö, J., The Selenga River Delta— Geochemical barrier for protecting Lake Baikal’s waters, Regional Environ. Change, 2016.Google Scholar
  12. 12.
    Chebykin, E.P., Goldberg, E.L., and Kulikova, N.S, Elemental composition of suspended particles from the surface waters of Lake Baikal in the zone affected by the Selenga River, Russ. Geol. Geophys., 2010, vol. 51, pp. 1126–1132.CrossRefGoogle Scholar
  13. 13.
    Dalai, B. and Ishiga, H, Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin, Mongolia, Environ. Monit. Assess., 2013, vol. 185, pp. 2869–2881.CrossRefGoogle Scholar
  14. 14.
    Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Quarterly J. Royal Meteorol. Soc., 2011, vol. 137, no. 656, pp. 553–597.CrossRefGoogle Scholar
  15. 15.
    Deutsche Vereinigung für Waßserwirtschaft, Abwasser und Abfall e.V. (DWA), Aussagekraft von Gewässergüteparametern in Fließgewässern. Teil II: Summenparameter, Kohlenstoffverbindungen und sauerstoffverbrauchende Substanzen, Mineralstoffe, Organische Schadstoffe, Hygienische Kennwerte. Teil III: Hinweise zur Probenahme für physikalisch-chemische Untersuchungen. 1996, DVWK-Merkblatt 228.Google Scholar
  16. 16.
    Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L., and Wiberg, D., Global Agro-Ecological Zones Assessment for Agriculture (GAEZ 2008), Laxenburg, Austria: IIASA; Rome, Italy: FAO, 2008.Google Scholar
  17. 17.
    Food and Agriculture Organization of the United Nations (FAO), FAOSTAT database. aspx?PageID=362. Cites March 12, 2015.Google Scholar
  18. 18.
    Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., and Alcamo, J, Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: A global simulation study, Global Environ. Change-Human Policy Dimensions, 2013, vol. 23, no. 1, pp. 144–156.CrossRefGoogle Scholar
  19. 19.
    Garmaev, E.Zh. and Hristoforov, A.V, Water Resources of Lake Baikal Rivers: Basics for Use and Protection, “GEO” Novosibirsk: Acad. press, 2010 (in Russian).Google Scholar
  20. 20.
    Gelfan, A., Motovilov, Yu., Krylenko, I., Moreido, V., and Zakharova, E, Testing robustness of the physically- based ECOMAG model with respect to changing conditions, Hydrol. Sci. J., 2015, vol. 60, no. 7–8, pp. 1266–1285.CrossRefGoogle Scholar
  21. 21.
    GEMS (2015): Global Environmental Monitoring System Database. Cited September 23, 2015.Google Scholar
  22. 22.
    Hampton, S.E., Izmest’eva, L.R., Moore, M.V., Katz, S.L., Dennis, B., and Silow, E.A, Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia, Glob. Change Biol., 2008, vol. 14, pp. 1947–1958.CrossRefGoogle Scholar
  23. 23.
    Hay, L.E., Wilby, R.L., and Leavesley, G.H., A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States, JAWRA, 2000, vol. 36, no. 2, pp.387–397.Google Scholar
  24. 24.
    Hofmann, J., Hürdler, J., Ibisch, R., Schaeffer, M., and Borchardt, D, Analysis of recent nutrient emission pathways, resulting surface water quality and ecological impacts under extreme continental climate: the Kharaa River Basin (Mongolia), Int. Rev. Hydrobiol., 2011, vol. 96, no. 5, pp. 484–519.Google Scholar
  25. 25.
    Hofmann, J., Venohr, M., Behrendt, H., and Opitz, D, Integrated Water Resources Management in Central Asia: Nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia, Water Sci. Technol., 2010, vol. 62, pp. 353–363.CrossRefGoogle Scholar
  26. 26.
    Inam, E., Khantotong, S., Kim, K.W., Tumendemberel, B., Erdenetsetseg, S., and Puntsag, T, Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia, Environ. Geochem. Health, 2011, vol. 33, pp. 57–69.CrossRefGoogle Scholar
  27. 27.
    Karthe, D., Chalov, S., and Borchardt, D, Water resources and their management in central Asia in the early twenty first century: Status, challenges and future prospects, Environ. Earth Sci., 2015a, vol. 73, no. 2, pp. 487–499.Google Scholar
  28. 28.
    Karthe, D., Chalov, S., Kasimov, N., and Kappas, M, Water and Environment in the Selenga-Baikal Basin: International Research Cooperation for an Ecoregion of Global Relevance, Stuttgart, Germany: Ibidem, 2015b.Google Scholar
  29. 29.
    Karthe, D., Heldt, S., Houdret, A., and Borchardt, D., IWRM in a country under rapid transition: Lessons learnt from the Kharaa River Basin, Mongolia, Environ. Earth Sci., 2015c, vol. 73, no. 2, pp. 681–695. doi 10.1007/s12665-014-3435-yCrossRefGoogle Scholar
  30. 30.
    Karthe, D., Heldt, S., Rost, G., Londong, J., Ilian, J., Heppeler, J., Khurelbaatar, G., Sullivan, C., van Afferden, M., Stäudel, J., Scharaw, B., Westerhoff, T., Dietze, S., Sigel, K., Hofmann, J., Watson, V., and Borchardt, D., Modular concept for municipal waste water management in the Kharaa River Basin, Mongolia, Integrated Water Resources Management: Concept, Research and Implementation, Borchardt, D., Bogardi, J., and Ibisch, R., Eds., Heidelberg, Germany, N.Y., 2016.Google Scholar
  31. 31.
    Karthe, D., Hofmann, J., Ibisch, R., Heldt, S., Westphal, K., Menzel, L., Avlyush, S., and Malsy, M., Science-based IWRM implementation in a data-scarce Central Asian Region: Experiences from a research and development project in the Kharaa River Basin, Mongolia, Water, 2015d, vol. 7, no. 7, pp. 3486–3514.CrossRefGoogle Scholar
  32. 32.
    Karthe, D., Malsy, M., Kopp, B., Minderlein, S., and Hülsmann, L, Assessing water availability and its drivers in the context of an Integrated Water Resources Management (IWRM): A case study from the Kharaa River Basin, Mongolia, GeoÖko, 2013, vol. 34, no. 1–2, pp. 5–26.Google Scholar
  33. 33.
    Kasimov, N.S., Kosheleva, N.E., Sorokina, O.I., Bazha, S.N., Gunin, P.D., and Enkh-Amgalan, S., Ecological-geochemical state of soils in Ulaanbaatar (Mongolia), Eurasian Soil Sci., 2011, vol. 44, no. 7. pp. 709–721.CrossRefGoogle Scholar
  34. 34.
    Kaus, A., Schäffer, M., Büttner, O., Karthe, D., and Borchardt, D., Regional patterns of heavy metal concentrations in water, sediment and five consumed fish species of the Kharaa River basin, Mongolia, Regional Environ. Change.Google Scholar
  35. 35.
    Khazheeva, Z.I., Tulokhonov, A.K., and Urbazaeva, S.D, Distribution of metals in water, bottom silt, and on suspensions in the arms of the Selenga Delta, Chem. Sustainable Develop., 2006, vol. 14, pp. 279–285.Google Scholar
  36. 36.
    Khazheeva, Z.I., Urbazaeva, S.D., Bodoev, N.V., Radnaeva, L.D., and Kalinin, Y.O, Heavy metals in the water and bottom sediments of the Selenga River delta, J. Water Res., 2004, vol. 31, pp. 64–67.CrossRefGoogle Scholar
  37. 37.
    Komov, V.T., Pronin, N.M., and Mendsaikhan, B, Mercury content in muscles of fish of the Selenga River and lakes of its basin (Russia), Inland Water Biol., 2014, vol. 7, pp. 178–184.CrossRefGoogle Scholar
  38. 38.
    Kosheleva, N.E., Kasimov, N.S., Gunin, P.D., Bazha, S.N., Sandag, E.-A., Sorokina, O., Timofeev, I., Alexeenko, A., and Kisselyeva, T., Hot spot assessment: Cities of the Selenga River Basin, Water and Environment in the Selenga-Baikal Basin: International Research Cooperation for an Ecoregion of Global Relevance, Karthe, D., Chalov, S., Kasimov, N., and Kappas, M., Eds., Stuttgart: ibidem, 2012, pp. 73–86.Google Scholar
  39. 39.
    Lehner, B., Verdin, K., and Jarvis., A, New global hydrography derived from spaceborne elevation data, Eos Trans., 2008, vol. 89, no. 10, pp. 93–94.CrossRefGoogle Scholar
  40. 40.
    Logachev, N.A, History and geodynamics of the Baikal rift, Russ. Geol. Geophys., 2003, vol. 44, no. 5, pp. 391–406.Google Scholar
  41. 41.
    Lychagin, M., Jarsjö, J., Thorslund, J., Shinkareva, G., Chalov, S., and Kasimov, N., Surface water pathways of heavy metals in the Selenga River System, Regional Environ. Change.Google Scholar
  42. 42.
    Magnuson, J.J., Robertson, D.M., Benson, B.J., Wynne, R.H., Livingstone, D.M., Arai, T., Assel, R.A., Barry, R.G., Card, V., Kuusisto, E., Granin, N.G., Prowse, T.D., Stewart, K.M., and Vuglinski, V.S, Historical trends in lake and river ice cover in the Northern Hemisphere, Science, 2000, vol. 289, no. 5485, pp. 1743–1746.CrossRefGoogle Scholar
  43. 43.
    Malsy, M., Heinen, M., aus der Beek, T., and Flörke, M, Water recourses and socio-economic development in a water scarce region on the example of Mongolia, GeoÖko, 2013, vol. 34, no. 1–2, pp. 27–49.Google Scholar
  44. 44.
    Malve, O., Tattari, S., Riihimäki, J., Jaakkola, E., Voß, A., Williams, R., and Bärlund, I, Estimation of agricultural non-point load at the European scale, Hydrol. Processes, 2012, vol. 26, no. 16, pp. 2385–2394.CrossRefGoogle Scholar
  45. 45.
    Minderlein, S. and Menzel, L, Evapotranspiration and energy balance dynamics of a semi arid mountainous steppe and shrubland site in northern Mongolia, Environ. Earth Sci., 2015, vol. 73, no. 2, pp. 593–609.CrossRefGoogle Scholar
  46. 46.
    Moore, M.V., Hampton, S.E., Izmest’eva, L.R., Silow, E.A., Peshkova, E.V., and Pavlov, B.K, Climate change and the World’s “Sacred Sea”–Lake Baikal, Siberia, Bioscience, 2009, vol. 59, no. 5, pp. 405–417.CrossRefGoogle Scholar
  47. 47.
    Motovilov, Yu. and Gelfan, A., Assessing runoff sensitivity to climate change in the Arctic basin: Empirical and modelling approaches, Cold and Mountain Region Hydrological Systems Under Climate Change: Towards Improved Projections, Gelfan, A., Yang, D., Gusev, E., and Kunstmann, H., Eds., IAHS Publications,2013, vol. 360, pp. 105–112.Google Scholar
  48. 48.
    Motovilov, Yu., Gottschalk, L., Engeland, K., and Rodhe, A, Validation of a distributed hydrological model against spatial observation, Agr. Forest Meteorol., 1999, vol. 98–99, pp. 257–277.CrossRefGoogle Scholar
  49. 49.
    Mun, Y., Ko, I.H., Janchivdorj, L., Gomboev, B., Kang, S.I., and Lee, C.H., Integrated Water Management Model on the Selenga River Basin—status survey and integration (Phase I), Seoul, South Korea: Korea Environ. Inst., 2008.Google Scholar
  50. 50.
    Nadmitov, B., Hong, S., Kang, S.I., Chu, J.M., Gomboev, B., Janchivdorj, L., Lee, C.H., and Khim, J.S., Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009), Environ. Sci. Pollut. R., 2014, vol. 22, no. 4, pp. 2856–2867.CrossRefGoogle Scholar
  51. 51.
    Opp, C., Naturphänomene und Probleme des Naturund Umweltschutzes am Baikalsee, Petermanns Geographische Mitteilungen, 1994, vol. 138, no. 4, pp. 219–234.Google Scholar
  52. 52.
    Opp, C., Welterbe Baikal: Naturausstattung, Nutzungseingriffe, Schutzstrategien, Glaser, R. and Kremb, K., Eds., Asien, Darmstadt, Germany: Wissenschaftliche Buchgesellschaft, 2007.Google Scholar
  53. 53.
    Pavlov, D.F., Tomilina, I.I., Zakonnov, V.V., and Amgaabazar, E, Toxicity assessment of bottom sediments in watercourses in Selenga River basin on the territory of Mongolia, J. Water Res., 2008, vol. 35, pp. 92–96.CrossRefGoogle Scholar
  54. 54.
    Pietron, J., Jarsjö, J., Romanchenko, A.O., and Chalov, S.R., Model analyses of the contribution of inchannel processes to sediment concentration hysteresis loops, J. Hydrol., vol. 527, pp. 576–589.Google Scholar
  55. 55.
    Pfeiffer, M., Batbayar, G., Hofmann, J., Siegfried, K., Karthe, D., and Hahn-Tomer, S, Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia, Environ. Earth Sci., 2015, vol. 73, no. 2, pp. 649–662.Google Scholar
  56. 56.
    Priess, J., Schweitzer, C., Batkhishig, O., Koschitzki, T., and Wurbs, D, Impacts of land-use dynamics on erosion risks and water management in Northern Mongolia, Environ. Earth Sci., 2015, vol. 73, no 2, pp. 697–708.CrossRefGoogle Scholar
  57. 57.
    Priess, J., Schweitzer, C., Wimmer, F., Batkhishig, O., and Mimler, M, The consequences of land-use change and water demands in Central Mongolia, Land Use Policy, 2011, vol. 28, no. 1, pp. 4–10.CrossRefGoogle Scholar
  58. 58.
    Reder, K., Bärlund, I., Voß, A., Kynast, E., Williams, R., Malve, O., and Flörke, M, European scenario studies on future in-stream nutrient concentrations, Trans. ASABE, 2013, vol. 56, no. 6, pp. 1407–1417.Google Scholar
  59. 59.
    Reder, K., Flörke, M., and Alcamo, J, Modelling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations, Environ. Modelling Software, 2015, vol. 63, pp. 251–263.CrossRefGoogle Scholar
  60. 60.
    Renard, K.G, Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE), Washington, 1997.Google Scholar
  61. 61.
    Rustomji, P., Caitcheon, G., and Hairsine, P, Combining a spatial model with geochemical tracers and river station data to construct a catchment sediment budget, Water Resour. Res., 2008, vol. 44, W01422. doi 10.1029/2007WR006112Google Scholar
  62. 62.
    Sandmann, R, Gier nach Bodenschätzen und Folgen für die Mongolei, Geographische Rundschau, 2012, vol. 64, no. 12, pp. 26–33.Google Scholar
  63. 63.
    Scharaw, B. and Westerhoff, T., A leak detection in drinking water distribution network of Darkhan in framework of the project Integrated Water Resources Management in Central Asia, Model Region Mongolia, Proc. IWA 1st Central Asian Regional Young and Senior Water Professionals Conference, Gurinovich, A.D., Ed., Almaty, Kazakhstan, 2011, pp. 275–282.Google Scholar
  64. 64.
    Sigel, K., Altantuul, K., and Basandorj, D, Household needs and demand for improved water supply and sanitation in peri-urban ger areas: The case of Darkhan, Mongolia, Environ. Earth Sci., 2012, vol. 65, no. 5, pp. 1561–1566.CrossRefGoogle Scholar
  65. 65.
    Sorokina, O.I., Kosheleva, N.E., Kasimov, N.S., Golovanov, D.L., Bazha, S.N., Dorzhgotov, D., and Enkh-Amgalan, S, Heavy metals in the air and snow cover of Ulan Bator, Geogr. Nat. Resour., 2013, vol. 34, no. 3, pp. 291–301.CrossRefGoogle Scholar
  66. 66.
    Sorokovikova, L.M., Popovskaya, G.I., Tomberg, I.V., Sinyukovich, V.N., Kravchenko, O.S., Marinaite, I.I., Bashenkhaeva, N.V., and Khodzher, T.V, The Selenga River Water Quality on the border with Mongolia at the beginning of the 21st century, Russ. Meteorol. Hydrol., 2013, vol. 38, no. 2, pp. 126–133.CrossRefGoogle Scholar
  67. 67.
    StatSoft, STATISTICA Data Analysis Software System, Version 8.0 for Windows, Tulsa, OK,USA: StatSoft Inc., 2008.Google Scholar
  68. 68.
    Stubblefield, A., Chandra, S., Eagan, S., Tuvshinjargal, D., Davaadorzh, G., Gilroy, D., Sampson, J., Thorne, J., Allen, B., and Hogan, Z, Impacts of gold mining and land use alterations on the water quality of central Mongolian rivers, Integr. Environ. Assess Manag., 2005, vol. 1, pp. 365–373.CrossRefGoogle Scholar
  69. 69.
    Theuring, P., Collins, A.L., and Rode, M, Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia, Sci. Total Environ., 2015, vol. 526, pp. 77–87.CrossRefGoogle Scholar
  70. 70.
    Theuring, P., Rode, M., Behrens, S., Kirchner, G., and Jha, A, Identification of fluvial sediment sources in a meso-scale catchment, Northern Mongolia, Hydrol. Process., 2013, vol. 27, no. 6, pp. 845–856.CrossRefGoogle Scholar
  71. 71.
    Thorslund, J., Jarsjö, J., Chalov, S., and Belozerova, E, Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case, J. Environ. Monitor., 2012, vol. 14, no. 10, pp. 2780–2792.CrossRefGoogle Scholar
  72. 72.
    Törnqvist, R., Jarsjö, J., Pietron, J., Bring, A., Rogberg, P., Asokan, S.M., and Destouni, G, Evolution of the hydro-climate system in the Lake Baikal basin, J. Hydrol., 2015, vol. 519, pp. 1953–1962.CrossRefGoogle Scholar
  73. 73.
    Voß, A., Alcamo, J., Bärlund, I., Voß, F., Kynast, E., Williams, R., and Malve, O, Continental scale modeling of in-stream river water quality: A report on methodology, test runs, and scenario application, Hydrol. Processes, 2012, vol. 26, no. 16, pp. 2370–2384.CrossRefGoogle Scholar
  74. 74.
    Weedon, G.P., Balsamo, G., Bellouin, N., Gomes, S., Best, M.J., and Viterbo, P, The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim rea-nalysis data, Water Resour. Res., 2014, vol. 50, no. 9, pp. 7505–7514.CrossRefGoogle Scholar
  75. 75.
    Williams, R., Keller, V., Voß, A., Bärlund, I., Malve, O., Riihimäki, J., Tattari, S., and Alcamo, J, Assessment of current water pollution loads in Europe: Estimation of gridded loads for use in global water quality models, Hydrol. Processes, 2012, vol. 26, no. 16, pp. 2395–2410.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • Daniel Karthe
    • 1
    • 2
    Email author
  • Sergey Chalov
    • 3
  • Vsevolod Moreido
    • 4
  • Margarita Pashkina
    • 3
  • Anna Romanchenko
    • 3
  • Gunsmaa Batbayar
    • 1
  • Andrei Kalugin
    • 4
  • Katja Westphal
    • 1
  • Marcus Malsy
    • 5
  • Martina Flörke
    • 5
  1. 1.Helmholtz Centre for Environmental ResearchMagdeburgGermany
  2. 2.The Faculty of Geoscience and GeographyGeorg-August University GöttingenGöttingenGermany
  3. 3.Faculty of GeographyMoscow State UniversityMoscowRussia
  4. 4.Water Problems InstituteRussian Academy of SciencesMoscowRussia
  5. 5.Center for Environmental Systems ResearchUniversität KasselKasselGermany

Personalised recommendations