Advertisement

Water Resources

, Volume 42, Issue 6, pp 766–775 | Cite as

Field studies of runoff formation in the far east region based on modern observational instruments

  • B. I. GartsmanEmail author
  • V. V. Shamov
Water Resources and the Regime of Water Bodies

Abstract

The development of methods for studying river runoff formation to integrate the up-to-day instruments of point hydrological–hydrochemical observations with new concepts and modern simulation means is discussed. The proposed methodological approaches are mostly based on the results of several years of works in an experimental mountain-forest basin in the southern Far East, Russian Federation. Despite the moderate experience analyzed in the article, the tested methodology is shown to be valuable and effectively applicable to basic hydrological studies and engineering–hydrological surveys, accompanying the designing of large facilities.

Keywords

hydrological studies hydrochemical observations runoff formation EMMA-model experimental basin Far East 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berseneva, I.A., Klimaty aridnoi zony Azii (Climates of the Arid Zone of Asia), Moscow: Nauka, 2006.Google Scholar
  2. 2.
    Boldeskul, A.G., Shamov, V.V., Gartsman, B.I., and Kozhevnikova, N.K., Ionic compositioin of genetic types of waters in a small river basin: stationary studies in the Central Sikhote Alin, Tikhookean. Geol., 2014, vol. 33, no. 2, pp. 90–101.Google Scholar
  3. 3.
    Bugaets, A.N., Gartsman, B.I., Krasnopeev, S.M., and Bugaets, N.D., An experience of updated hydrological network data processing using the CUAHSI HIS ODM data management system, Russ. Meteorol. Gidrol., 2013, no. 5, pp. 359–366.CrossRefGoogle Scholar
  4. 4.
    Vinogradov, V.N. and Kuptsov, A.N., On the hydrology of dry rivers in regions of active volcanism, Vodn. Resur., 1980, no. 5, pp. 178–184.Google Scholar
  5. 5.
    Vodnye resursy rek zony BAM (River Water Resources in BAM Zone), Chebotarev, A.I. and Dobroumov, B.M., Eds., Leningrad: Gidrometeoizdat, 1977.Google Scholar
  6. 6.
    Gartsman, B.I., Hydrographic and landscape description of a river basin based on GISand geographic data, Russ. Meteorol. Gidrol., 2014, no. 6, pp. 407–415.CrossRefGoogle Scholar
  7. 7.
    Gartsman, B.I., Shamov, V.V., and Tret’yakov, A.S., A system of water balance models of a small river basin, Geogr. Prir. Resur., 1993, no. 3, pp. 27–36.Google Scholar
  8. 8.
    Gidrologiya zabolochennykh territorii zony mnogoletnei merzloty Zapadnoi Sibiri (Wetland Hydrology of Permafrost Zone), Novikov, S.M., Ed., St. Petersburg: VVM, 2009.Google Scholar
  9. 9.
    Gubareva, T.S., Gartsman, B.I., Shamov, V.V., Boldeskul, A.G., and Kozhevnikova, N.K., Genetic disintegration of the runoff hydrograph, Russ. Meteorol. Gidrol., 2015, no. 3, pp. 215–226.CrossRefGoogle Scholar
  10. 10.
    Zhil’tsov, A.S., Gidrologicheskaya rol’ gornykh khvoinoshirokolistvennykh lesov Yuzhnogo Primor’ya (Hydrological Role of Mountain Conifer-Broad-Leaved Forests), Vladivostok: Dal’nauka, 2008.Google Scholar
  11. 11.
    Kozhevnikova, N.K. and Dyukarev, V.N., Ecological protection properties of forest canopy in the upper zone of mountains (Southern Sikhote-Alin), Probl. Region. Ekol., 2011, no. 4, pp. 30–38.Google Scholar
  12. 12.
    Li, K.T., Chen, N.K., Gartsman, B.I., and Bugaets, A.N., Current version of a unit-hydrograph model and its application in Taiwan and Russia, Geogr. Prir. Res., 2009, no. 1, pp. 144–151.Google Scholar
  13. 13.
    Resursy poverkhnostnykh vod SSSR (USSR Surface Water Resources), vol. 18, Dal’nii Vostok (Far East), iss. 1, Verkhnii i Srednii Amur (Upper and Middle Amur), Leningrad: Gidrometeoizdat, 1966.Google Scholar
  14. 14.
    Semenov, M.Yu. and Zimnik, E.A., The use of surfacewater chemistry for assessing the contributions of sources of dissolved chemicals, Geogr. Prir. Res., 2010, no. 2, pp. 132–139.Google Scholar
  15. 15.
    Teplovlagoobmen v merzlotnykh landshaftakh Vostochnoi Sibiri i ego faktory (Heat and Moisture Exchange in Permafrost Landscapes of East Siberia and its Factors), Georgiadi, A.G., and Zolokrylin, A.N., Eds., Moscow: Triada, 2007.Google Scholar
  16. 16.
    Timofeev, V.G. and Panov, V.V., Kosvennye metody vydeleniya i analiza vodnykh mass (Indirect Methods for Identification and Analysis of Water Masses), Leningrad: Gidrometeoizdat, 1962.Google Scholar
  17. 17.
    Shamov, V.V., Specific features of water balance formation in elementary river basins in the southern Far East, in Geologo-geokhimicheskie i biogeokhimicheskie issledovaniya na Dal’nem Vostoke (Geological-Geochemical and Biogeochemical Studies in the Far East), no. 8, Vladivostok: Dal’nauka, 1998, pp. 124–132.Google Scholar
  18. 18.
    Shamov, V.V., Gartsman, B.I., Gubareva, T.S., Kozhevnikova, N.K., and Boldeskul, A.G., Tracerbased experimental studies of runoff genetic structure: problem formulation, Inzh. Izysk., 2013, no. 1, pp. 60–69.Google Scholar
  19. 19.
    Shutov, V.A. and Kapotov, L.A., Dynamics of soil moisture reserves in Valdai by observational data, Meteorol. Gidrol., 2006, no. 11, pp. 70–80.Google Scholar
  20. 20.
    Ferronskii, V.I. and Polyakov, V.A., Izotopiya gidrosfery Zemli (Isotopy of Earth Hydrosphere), Moscow: Nauch. mir, 2009.Google Scholar
  21. 21.
    Edel’shtein, K.K. and Smakhtina, O.Yu., Genetic structure of river runoff and a chemical-statistical method for identifying its elements, Vodn. Resur., 1991, no. 5, pp. 5–20.Google Scholar
  22. 22.
    Cristophersen, N. and Hooper, R.P., Multivariate analysis of stream water chemical data: the use of principal component analysis for the end-member mixing problem, Wat. Res. Res., 1992, pp. 99–107.Google Scholar
  23. 23.
    Elsenbeer, H., Lorieri, D., and Bonell, M., Mixing model approach to estimate storm flow sources in an overall land flow-dominated tropical rain forest catchment, Wat. Res. Res., 1995, vol. 31, no. 9, pp. 2267–2278.CrossRefGoogle Scholar
  24. 24.
    Environmental Isotopes in the Hydrological Cycle— Principles and Applications, vol. 1, Introduction—Theory, Methods, Review, IHP-V. Technical Document, No. 38, Mook, V.G, Ed., Paris: IAEA, UNESCO, 2001.Google Scholar
  25. 25.
    Geibe, C.E., Danielsson, R., van Hees, P.A.W., and Lundsrom, U.S., Comparison of soil solution chemistry sampled by centrifugation, two types of suction lysimeters and zero-tension lysimeters, Appl. Geochem., 2006, pp. 2096–2111.Google Scholar
  26. 26.
    Ladouche, B., Probst, A., Viville, D., et al., Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France), J. Hydrol., 2001, vol. 242, nos. 3-4), pp. 255–274.CrossRefGoogle Scholar
  27. 27.
    Lundquist, J.D. and Cayan, D.R., Seasonal and spatial patterns in diurnal cycles in streamflow in the western United States, J. Hydrometeorol., 2002, pp. 591–603.Google Scholar
  28. 28.
    Petelet-Giraud, F. and Negrel, P., Geochemical flood deconvoluation in a Mediterranean catchment (Herault, France) by St isotopes for relative contribution to stream water discharge, Appl. Geochem., 2003, vol. 15, no. 3, pp. 311–325.Google Scholar
  29. 29.
    Wagener, T., Sivapalan, M., Troch, P.A., et al., The future of hydrology: an evolving science for a changing world, Wat. Res. Res., vol. 46, W05301, doi: 1029/2009WR008906, 2010.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Pacific Institute of Geography, Far East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations