Water Resources

, Volume 41, Issue 5, pp 512–521 | Cite as

A mathematical model of channel deformations in permafrost zone rivers

  • E. I. Debol’skayaEmail author
Hydrophysical Processes


A mathematical model is presented, allowing the calculation of channel deformations of permafrost zone rivers caused by thermo-erosional niching under the effect of waves of different origin under the conditions of growing ambient temperature. The model is based on equations of transient fluid motion in two-dimensional formulation, Stefan equation for determining the displacement of water-ice phase transition interface, and mass conservation equations for transported sediments (deformation equations). The model was tested against a particular case of steady flow based on data of a laboratory experiment. Numerical experiments revealed the key factors of the process and allowed the impact of waves with different duration and intensity (spring floods and releases from engineering structures) on river channel to be analyzed.


channel deformations melting waves mathematical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramov, R.V., Thawing niches, Priroda (Moscow, Russ. Fed.), 1957, vol. 46, no. 7, pp. 112–113.Google Scholar
  2. 2.
    Debol’skaya, E.I., Debol’skii, V.K., Gritsuk, I.I., et al., Modeling deformation of channels composed of permafrost rocks at an increase in the ambient temperature, Led i Sneg, 2013, no. 1 (121), pp. 104–111.Google Scholar
  3. 3.
    Debol’skaya, E.I., Debol’skii, V.K., and Maslikova, O.Ya., Mathematical modeling of bed deformations in ice-covered non-steady-state flows, Water Resour., 2006, vol. 33, no. 1, pp. 24–32.CrossRefGoogle Scholar
  4. 4.
    Kotlyakov, A.V., Gritsuk, I.I., Maslikova, O.Ya., and Ponomarev, N.K., Experimental study of the effect of the ice content of river bed soils on riverbank slope dynamics, Led i Sneg, 2011, no. 2 (114), pp. 92–99.Google Scholar
  5. 5.
    Bryant, I.D., The utilization of Arctic river analogue studies in the interpretation of periglacial river sediments from southern Britain, in Background to Palaeohydrolog., Chichester: Wiley, 1983, pp. 413–431.Google Scholar
  6. 6.
    Coastard, F., Gautier, E., Brunstein, D., et al., Impact of the global warming on the fluvial thermal erosion over the Lena River in Central Siberia, Geophys. Res. Lett., 2007, vol. 34, p. L14501. doi: 10.1029/2007GL030212CrossRefGoogle Scholar
  7. 7.
    Dupeyrat, L., Coastard, F., Randriamazaoro, R., et al., Effects of ice content on the thermal erosion of permafrost: implications for coastal and fluvial erosion, Perm. Perigl. Proc., 2011, vol. 22, pp. 179–187.CrossRefGoogle Scholar
  8. 8.
    Church, M., Hydrology and permafrost with reference to North America, Permafrost Hydrology, Proc. Workshop Seminar, Canadian National Committee, 1974, pp. 7–20.Google Scholar
  9. 9.
    Church, M., River studies in Northern Canada: reading the record from river morphology, Geoscience Canada, 1977, vol. 4, no. 1, pp. 4–12.Google Scholar
  10. 10.
    Clark, M.J., Periglacial hydrology, in Advances in Periglacial Geomorphology, Chichester: Wiley, 1988, pp. 415–462.Google Scholar
  11. 11.
    Cooper, R.H. and Hollingshead, A.B., River banks erosion in regions of permafrost, Fluvial Processes and Sedimentation. Proc. Hydrology Sympos., Edmonton: University of Alberta, 1973, no. 9, pp. 272–283.Google Scholar
  12. 12.
    Diel, W.R., Bascle, R.J., Banet, A.C., et al., Riches from the Earth: a Geologic Tour along the Dalton Highway Alaska, US Bureau of Land Management, Alaska Natural History Association, 1993.Google Scholar
  13. 13.
    Jacobus van Huissteden, Tundra rivers of the last glacial: sedimentation and geomorphological processes during the middle pleniglacial in Twente, Eastern Netherlands, Academisch proefschrift ter verkrijging van de graad van doctor aan de Vrije Universiteit te Amsterdam, Amsterdam, 1990.Google Scholar
  14. 14.
    Kolstrup, E., Late Pleistocene periglacial conditions in Blaksmark near Yarde (Denmark), Geologie en Mijnbouw, 1985, vol. 64, no. 3, pp. 263–270.Google Scholar
  15. 15.
    Randriamazaoro, R., Dupeyrat, L., Costard, F., and Gailhardis E. Carey, Fluvial thermal erosion: heat balance integral method, Earth Surf. Processes Landforms, 2007, vol. 32, no. 12, pp. 1828–1840.CrossRefGoogle Scholar
  16. 16.
    Slaughter, C.W. and Collins, C.M., Sediment load and channel characteristics in subarctic upland catchments, J. Hydrol. (Amsterdam, Neth.), 1981, vol. 20, pp. 39–48.Google Scholar
  17. 17.
    Scott, K.M., Effects of Permafrost on Stream Channel Behavior in Arctic Alaska, U.S. Geological Survey Professional Paper, Washington: United States Government Printing Office. Library of Congress Catalog, 1978.Google Scholar
  18. 18.
    Thorne, C.R. and Lewin, J., Bank processes, bed material movement and planform development in a meandering river, Adjustments of the Fluvial System, Dubuque, Iowa: Kendall Hunt, 1979, pp. 117–137.Google Scholar
  19. 19.
    Vandenberghe, J., Vandenberghe, N., Gullentops, F., and Clarysse, R., Late Pleistocene and Holocene in the neighbourhood of Brugge, Letteren en Schone Kunsten van Belgie. Klasse der Wetenschappen, 1974, vol. 36, no. 5.Google Scholar
  20. 20.
    Walker, H.J. and Arnborg, L., Permafrost and ice-wedge effect on riverbank erosion, Proc. Permafrost International Conf., Washington, DC: National Academy of Sciences, 1966, pp. 164–171.Google Scholar
  21. 21.
    Walker, H.J., Arnborg, L., and Peippo, J., Riverbank erosion in the Colville delta, Alaska, Geografiska Annaler, 1987, vol. 69, no. 1, pp. 61–70.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Water Problems InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations