Optimal Policies in the Dasgupta—Heal—Solow—Stiglitz Model under Nonconstant Returns to Scale

  • Sergey M. AseevEmail author
  • Konstantin O. BesovEmail author
  • Serguei Yu. KaniovskiEmail author


The paper offers a complete mathematically rigorous analysis of the welfare-maximizing capital investment and resource depletion policies in the Dasgupta—Heal—Solow—Stiglitz model with capital depreciation and any returns to scale. We establish a general existence result and show that an optimal admissible policy may not exist if the output elasticity of the resource equals one. We characterize the optimal policies by applying an appropriate version of the Pontryagin maximum principle for infinite-horizon optimal control problems. We also discuss general methodological pitfalls arising in infinite-horizon optimal control problems for economic growth models, which are not paid due attention in the economic literature so that the results presented there often seem not to be rigorously justified. We finish the paper with an economic interpretation and a discussion of the welfare-maximizing policies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Acemoglu, Introduction to Modern Economic Growth (Princeton Univ. Press, Princeton, NJ, 2009).zbMATHGoogle Scholar
  2. 2.
    W. Antweiler and D. Trefler, “Increasing returns and all that: A view from trade,” Am. Econ. Rev. 92 (1), 93–119 (2002).Google Scholar
  3. 3.
    M. Arrazola and J. de Hevia, “More on the estimation of the human capital depreciation rate,” Appl. Econ. Lett. 11 (3), 145–148 (2004).Google Scholar
  4. 4.
    K. J. Arrow and M. Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy (Johns Hopkins Press, Baltimore, MD, 1970).Google Scholar
  5. 5.
    S. M. Aseev, “On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems,” Proc. Steklov Inst. Math. 287 (Suppl. 1), S11–S21 (2014) [transl. from Tr. Inst. Mat. Mekh. (Ekaterinburg) 19 (4), 15–24 (2013)].MathSciNetzbMATHGoogle Scholar
  6. 6.
    S. M. Aseev, “Adjoint variables and intertemporal prices in infinite-horizon optimal control problems,” Proc. Steklov Inst. Math. 290, 223–237 (2015) [transl. from Tr. Mat. Inst. Steklova 290, 239–253 (2015)].MathSciNetzbMATHGoogle Scholar
  7. 7.
    S. Aseev, K. Besov, and S. Kaniovski, “The optimal use of exhaustible resources under nonconstant returns to scale,” WIFO Working Paper No. 525 (Austrian Inst. Econ. Res., Vienna, 2016), Scholar
  8. 8.
    S. M. Aseev, K. O. Besov, and A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics,” Russ. Math. Surv. 67 (2), 195–253 (2012) [transl. from Usp. Mat. Nauk 67 (2), 3–64 (2012)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    S. M. Aseev and A. V. Kryazhimskiy, “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons,” SIAM J. Control Optim. 43 (3), 1094–1119 (2004).MathSciNetzbMATHGoogle Scholar
  10. 10.
    S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems,” Proc. Steklov Inst. Math. 257, 1–255 (2007) [transl. from Tr. Mat. Inst. Steklova 257, 3–271 (2007)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. M. Aseev and V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems with dominating discount,” Dyn. Contin. Discrete Impuls. Syst., Ser. B: Appl. Algorithms 19 (1–2), 43–63 (2012).MathSciNetzbMATHGoogle Scholar
  12. 12.
    S. M. Aseev and V. M. Veliov, “Needle variations in infinite-horizon optimal control,” in Variational and Optimal Control Problems on Unbounded Domains, Ed. by G. Wolansky and A. J. Zaslavski (Am. Math. Soc., Providence, RI, 2014), Contemp. Math. 619, pp. 1–17.Google Scholar
  13. 13.
    S. M. Aseev and V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions,” Proc. Steklov Inst. Math. 291 (Suppl. 1), S22–S39 (2015) [repr. from Tr. Inst. Mat. Mekh. (Ekaterinburg) 20 (3), 41–57 (2014)].MathSciNetzbMATHGoogle Scholar
  14. 14.
    G. B. Asheim, W. Buchholz, and C. Withagen, “The Hartwick rule: Myths and facts,” Environ. Resour. Econ. 25 (2), 129–150 (2003).Google Scholar
  15. 15.
    E. J. Balder, “An existence result for optimal economic growth problems,” J. Math. Anal. Appl. 95 (1), 195–213 (1983).MathSciNetzbMATHGoogle Scholar
  16. 16.
    U. Bardi, The Limits to Growth Revisited (Springer, New York, 2011).Google Scholar
  17. 17.
    S. Basu and J. G. Fernald, “Returns to scale in U.S. production: Estimates and implications,” J. Polit. Econ. 105 (2), 249–283 (1997).Google Scholar
  18. 18.
    W. Beckerman, “‘Sustainable development’: Is it a useful concept?,” Environ. Values 3 (3), 191–209 (1994).Google Scholar
  19. 19.
    H. Benchekroun and C. Withagen, “The optimal depletion of exhaustible resources: A complete characterization,” Resour. Energy Econ. 33 (3), 612–636 (2011).Google Scholar
  20. 20.
    K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function,” Proc. Steklov Inst. Math. 284, 50–80 (2014) [transl. from Tr. Mat. Inst. Steklova 284, 56–88 (2014)].MathSciNetzbMATHGoogle Scholar
  21. 21.
    K. O. Besov, “On Balder’s existence theorem for infinite-horizon optimal control problems,” Math. Notes 103 (2), 167–174 (2018) [transl. from Mat. Zametki 103 (2), 163–171 (2018)].MathSciNetzbMATHGoogle Scholar
  22. 22.
    D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems (Springer, Berlin, 1991).zbMATHGoogle Scholar
  23. 23.
    D. Cass, “Optimum growth in an aggregative model of capital accumulation,” Rev. Econ. Stud. 32 (3), 233–240 (1965).MathSciNetGoogle Scholar
  24. 24.
    L. Cesari, Optimization—Theory and Applications: Problems with Ordinary Differential Equations (Springer, New York, 1983).zbMATHGoogle Scholar
  25. 25.
    P. Dasgupta and G. Heal, “The optimal depletion of exhaustible resources,” Rev. Econ. Stud. 41, 3–28 (1974).zbMATHGoogle Scholar
  26. 26.
    J. G. Fernald and C. I. Jones, “The future of US economic growth,” Am. Econ. Rev. 104 (5), 44–49 (2014).Google Scholar
  27. 27.
    W. Groot, “Empirical estimates of the rate of depreciation of education,” Appl. Econ. Lett. 5 (8), 535–538 (1998).Google Scholar
  28. 28.
    H. Halkin, “Necessary conditions for optimal control problems with infinite horizons,” Econometrica 42 (2), 267–272 (1974).MathSciNetzbMATHGoogle Scholar
  29. 29.
    C. A. S. Hall and J. W. Day Jr., “Revisiting the limits to growth after peak oil,” Am. Sci. 97 (3), 230–237 (2009).Google Scholar
  30. 30.
    R. F. Hartl, S. P. Sethi, and R. G. Vickson, “A survey of the maximum principles for optimal control problems with state constraints,” SIAM Rev. 37 (2), 181–218 (1995).MathSciNetzbMATHGoogle Scholar
  31. 31.
    M. Harrison, “Valuing the future: The social discount rate in cost-benefit analysis,” Visit. Res. Pap. (Productivity Commission, Canberra, 2010), available at SSRN: Scholar
  32. 32.
    P. Hartman, Ordinary Differential Equations (J. Wiley and Sons, New York, 1964).zbMATHGoogle Scholar
  33. 33.
    C. I. Jones, “Growth: With or without scale effects?,” Am. Econ. Rev. 89 (2), 139–144 (1999).Google Scholar
  34. 34.
    C. I. Jones, “Growth and ideas,” in Handbook of Economic Growth, Ed. by P. Aghion and S. N. Durlauf (North-Holland, Amsterdam, 2005), Vol. 1B, pp. 1063–1111.Google Scholar
  35. 35.
    T. C. Koopmans, “On the concept of optimal economic growth,” in The Econometric Approach to Development Planning (North-Holland, Amsterdam, 1965), Pont. Acad. Sci. Scripta Varia 28, pp. 225–300.Google Scholar
  36. 36.
    J. Laitner and D. Stolyarov, “Aggregate returns to scale and embodied technical change: Theory and measurement using stock market data,” J. Monet. Econ. 51 (1), 191–233 (2004).Google Scholar
  37. 37.
    W. C. Y. Li and B. H. Hall, “Depreciation of business R&D capital,” BEA Work. Pap. (Bureau Econ. Anal., Suitland, MD, 2016).Google Scholar
  38. 38.
    D. H. Meadows, D. L. Meadows, J. Randers, and W. W. Behrens III, The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind (Universe Books, New York, 1972).Google Scholar
  39. 39.
    P. Michel, “On the transversality condition in infinite horizon optimal problems,” Econometrica 50 (4), 975–985 (1982).MathSciNetzbMATHGoogle Scholar
  40. 40.
    W. D. Nordhaus, “A review of the Stern review on the economics of climate change,” J. Econ. Lit. 45 (3), 686–702 (2007).Google Scholar
  41. 41.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964).zbMATHGoogle Scholar
  42. 42.
    F. P. Ramsey, “A mathematical theory of saving,” Econ. J. 38 (152), 543–559 (1928).Google Scholar
  43. 43.
    P. Romer, “Cake eating, chattering, and jumps: Existence results for variational problems,” Econometrica 54 (4), 897–908 (1986).MathSciNetzbMATHGoogle Scholar
  44. 44.
    A. Seierstad and K. Sydsæter, “Sufficient conditions in optimal control theory,” Int. Econ. Rev. 18 (2), 367–391 (1977).MathSciNetzbMATHGoogle Scholar
  45. 45.
    A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications (North-Holland, Amsterdam, 1987).zbMATHGoogle Scholar
  46. 46.
    K. Shell, “Applications of Pontryagin’s maximum principle to economics,” in Mathematical Systems Theory and Economics I: Proc. Int. Summer Sch., Varenna, Italy, 1967 (Springer, Berlin, 1969), Lect. Notes Oper. Res. Math. Econ. 11, pp. 241–292.Google Scholar
  47. 47.
    R. M. Solow, “Intergenerational equity and exhaustible resources,” Rev. Econ. Stud. 41, 29–45 (1974).zbMATHGoogle Scholar
  48. 48.
    N. H. Stern, The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, Cambridge, 2007).Google Scholar
  49. 49.
    J. Stiglitz, “Growth with exhaustible natural resources: Efficient and optimal growth paths,” Rev. Econ. Stud. 41, 123–137 (1974).zbMATHGoogle Scholar
  50. 50.
    G. Turner, “Is global collapse imminent?,” MSSI Res. Pap. No. 4 (Melbourne Sustainable Soc. Inst., Univ. Melbourne, Melbourne, 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1LaxenburgAustria
  3. 3.Austrian Institute of Economic Research (WIFO)ViennaAustria

Personalised recommendations