Advertisement

Integrability of Exceptional Hydrodynamic-Type Systems

  • Maxim V. Pavlov
Article
  • 2 Downloads

Abstract

We consider non-diagonalizable hydrodynamic-type systems integrable by the extended hodograph method. We restrict the analysis to non-diagonalizable hydrodynamic reductions of the three-dimensionalMikhalev equation. We show that families of these hydrodynamictype systems are reducible to the heat hierarchy. Then we construct new particular explicit solutions for the Mikhalev equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Ferapontov, “Integration of weakly nonlinear hydrodynamic systems in Riemann invariants,” Phys. Lett. A 158 (3–4), 112–118 (1991).MathSciNetCrossRefGoogle Scholar
  2. 2.
    E. V. Ferapontov and K. R. Khusnutdinova, “On the integrability of (2 + 1)-dimensional quasilinear systems,” Commun. Math. Phys. 248 (1), 187–206 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    E. V. Ferapontov and K. R. Khusnutdinova, “The characterization of two-component (2 + 1)-dimensional integrable systems of hydrodynamic type,” J. Phys. A: Math. Gen. 37 (8), 2949–2963 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. V. Ferapontov and J. Moss, “Linearly degenerate partial differential equations and quadratic line complexes,” Commun. Anal. Geom. 23 (1), 91–127 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Gibbons and Y. Kodama, “Integrable quasilinear systems: generalized hodograph transformation,” in Nonlinear Evolutions: Proc. Workshop, Balaruc-les-Bains, 1987 (World Scientific, Singapore, 1988), pp. 97–107.Google Scholar
  6. 6.
    Y. Kodama, “A method for solving the dispersionless KP equation and its exact solutions,” Phys. Lett. A 129 (4), 223–226 (1988).MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y. Kodama, “A solution method for the dispersion-less KP equation,” Prog. Theor. Phys. Suppl. 94, 184–194 (1988).CrossRefGoogle Scholar
  8. 8.
    Y. Kodama, “Exact solutions of hydrodynamic type equations having infinitely many conserved densities,” Phys. Lett. A 135 (3), 171–174 (1989).MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Kodama, “Solutions of the dispersionless Toda equation,” Phys. Lett. A 147 (8–9), 477–482 (1990).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Kodama and J. Gibbons, “A method for solving the dispersionless KP hierarchy and its exact solutions. II,” Phys. Lett. A 135 (3), 167–170 (1989).MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Kodama and J. Gibbons, “Integrability of the dispersionless KP hierarchy,” in Nonlinear World: Proc. Workshop, Kiev, 1989 (World Scientific, Singapore, 1990), Vol. 1, pp. 166–180.Google Scholar
  12. 12.
    Y. Kodama and B. G. Konopelchenko, “Confluence of hypergeometric functions and integrable hydrodynamictype systems,” Theor. Math. Phys. 188 (3), 1334–1357 (2016) [transl. from Teor. Mat. Fiz. 188 (3), 429–455 (2016)].CrossRefzbMATHGoogle Scholar
  13. 13.
    B. G. Konopelchenko and G. Ortenzi, “Parabolic regularization of the gradient catastrophes for the Burgers–Hopf equation and Jordan chain,” arXiv: 1711.01087 [math-ph].Google Scholar
  14. 14.
    V. G. Mikhalev, “On the Hamiltonian formalism for Korteweg–de Vries type hierarchies,” Funct. Anal. Appl. 26 (2), 140–142 (1992) [transl. from Funkts. Anal. Appl. 26 (2), 79–82 (1992)].MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. V. Pavlov, “Hamiltonian formalism of weakly nonlinear hydrodynamic systems,” Theor. Math. Phys. 73 (2), 1242–1245 (1987) [transl. from Teor. Mat. Fiz. 73 (2), 316–320 (1987)].CrossRefzbMATHGoogle Scholar
  16. 16.
    M. V. Pavlov, “Integrable hydrodynamic chains,” J. Math. Phys. 44 (9), 4134–4156 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. V. Pavlov, “Integrability of the Egorov systems of hydrodynamic type,” Theor. Math. Phys. 150 (2), 225–243 (2007) [transl. from Teor. Mat. Fiz. 150 (2), 263–285 (2007)].MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. V. Pavlov, “Integrable dispersive chains and energy dependent Schrödinger operator,” J. Phys. A: Math. Theor. 47 (29), 295204 (2014).CrossRefzbMATHGoogle Scholar
  19. 19.
    S. P. Tsarev, “On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type,” Sov. Math., Dokl. 31, 488–491 (1985) [transl. from Dokl. Akad. Nauk SSSR 282 (3), 534–537 (1985)].zbMATHGoogle Scholar
  20. 20.
    S. P. Tsarev, “The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method,” Math. USSR, Izv. 37 (2), 397–419 (1991) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 54 (5), 1048–1068 (1990)].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.P.N. Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations