Advertisement

Darboux Moutard Transformations and Poincaré—Steklov Operators

  • R. G. Novikov
  • I. A. Taimanov
Article
  • 3 Downloads

Abstract

Formulas relating Poincaré–Steklov operators for Schrödinger equations related by Darboux–Moutard transformations are derived. They can be used for testing algorithms of reconstruction of the potential from measurements at the boundary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Adilkhanov and I. A. Taimanov, “On numerical study of the discrete spectrum of a two-dimensional Schrödinger operator with soliton potential,” Commun. Nonlinear Sci. Numer. Simul. 42, 83–92 (2017).MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. M. Crum, “Associated Sturm–Liouville systems,” Q. J. Math. 6, 121–127 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. Darboux, “Sur une proposition relative aux équations linéaires,” C. R. Acad. Sci. Paris 94, 1456–1459 (1882).zbMATHGoogle Scholar
  4. 4.
    B. A. Dubrovin, I. M. Kričever, and S. P. Novikov, “The Schrödinger equation in a periodic field and Riemann surfaces,” Sov. Math., Dokl. 17, 947–951 (1976) [transl. from Dokl. Akad. Nauk SSSR 229 (1), 15–18 (1976)].zbMATHGoogle Scholar
  5. 5.
    P. G. Grinevich and R. G. Novikov, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps,” Funct. Anal. Appl. 50 (2), 150–152 (2016) [transl. from Funkts. Anal. Prilozh. 50 (2), 81–84 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    P. G. Grinevich and R. G. Novikov, “Moutard transform approach to generalized analytic functions with contour poles,” Bull. Sci. Math. 140 (6), 638–656 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    P. G. Grinevich and R. G. Novikov, “Moutard transform for generalized analytic functions,” J. Geom. Anal. 26 (4), 2984–2995 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    P. G. Grinevich and R. G. Novikov, “Moutard transform for the conductivity equation,” arXiv: 1801.00295 [mathph].Google Scholar
  9. 9.
    P. G. Grinevich and S. P. Novikov, “Two-dimensional ‘inverse scattering problem’ for negative energies and generalized-analytic functions. I: Energies below the ground state,” Funct. Anal. Appl. 22 (1), 19–27 (1988) [transl. from Funkts. Anal. Prilozh. 22 (1), 23–33 (1988)].MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H.-C. Hu, S.-Y. Lou, and Q.-P. Liu, “Darboux transformation and variable separation approach: the Nizhnik–Novikov–Veselov equation,” Chin. Phys. Lett. 20 (9), 1413–1415 (2003).CrossRefGoogle Scholar
  11. 11.
    R. M. Matuev and I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and the conformal geometry of surfaces in four-dimensional space,” Math. Notes 100 (6), 835–846 (2016) [transl. from Mat. Zametki 100 (6), 868–880 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. B. Matveev, “Darboux transformations, covariance theorems and integrable systems,” in L. D. Faddeev’s Seminar on Mathematical Physics (Am. Math. Soc., Providence, RI, 2000), AMS Transl., Ser. 2, 201; Adv. Math. Sci. 49, pp. 179–209.Google Scholar
  13. 13.
    V. B. Matveev and M. A. Salle, Darboux Transformations and Solitons (Berlin, Springer, 1991).CrossRefzbMATHGoogle Scholar
  14. 14.
    Th. Moutard, “Sur la construction des équations de la forme 1 z d2z dxdy = λ(x, y), qui admettent une intégrale générale explicite,” J. Éc. Polytech. 28, 1–11 (1878).zbMATHGoogle Scholar
  15. 15.
    R. G. Novikov and I. A. Taimanov, “The Moutard transformation and two-dimensional multipoint delta-type potentials,” Russ. Math. Surv. 68 (5), 957–959 (2013) [transl. from Usp. Mat. Nauk 68 (5), 181–182 (2013)].CrossRefzbMATHGoogle Scholar
  16. 16.
    R. G. Novikov and I. A. Taimanov, “Moutard type transformation for matrix generalized analytic functions and gauge transformations,” Russ. Math. Surv. 71 (5), 970–972 (2016) [transl. from Usp. Mat. Nauk 71 (5), 179–180 (2016)].CrossRefzbMATHGoogle Scholar
  17. 17.
    R. G. Novikov, I. A. Taimanov, and S. P. Tsarev, “Two-dimensional von Neumann–Wigner potentials with a multiple positive eigenvalue,” Funct. Anal. Appl. 48 (4), 295–297 (2014) [transl. from Funkts. Anal. Prilozh. 48 (4), 74–77 (2014)].MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    I. A. Taimanov, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry,” Math. Notes 97 (1), 124–135 (2015) [transl. from Mat. Zametki 97 (1), 129–141 (2015)].CrossRefzbMATHGoogle Scholar
  19. 19.
    I. A. Taimanov, “A fast decaying solution to the modified Novikov–Veselov equation with a one-point singularity,” Dokl. Math. 91 (1), 35–36 (2015) [transl. from Dokl. Akad. Nauk 460 (2), 145–146 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    I. A. Taimanov, “Blowing up solutions of the modified Novikov–Veselov equation and minimal surfaces,” Theor. Math. Phys. 182 (2), 173–181 (2015) [transl. from Teor. Mat. Fiz. 182 (2), 213–222 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    I. A. Taimanov and S. P. Tsarev, “Two-dimensional Schrödinger operators with fast decaying potential and multidimensional L2-kernel,” Russ. Math. Surv. 62 (3), 631–633 (2007) [transl. from Usp. Mat. Nauk 62 (3), 217–218 (2007)].CrossRefzbMATHGoogle Scholar
  22. 22.
    I. A. Taimanov and S. P. Tsarev, “Blowing up solutions of the Novikov–Veselov equation,” Dokl. Math. 77 (3), 467–468 (2008) [transl. from Dokl. Akad. Nauk 420 (6), 744–745 (2008)].MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    I. A. Taimanov and S. P. Tsarev, “Two-dimensional rational solitons and their blowup via the Moutard transformation,” Theor. Math. Phys. 157 (2), 1525–1541 (2008) [transl. from Teor. Mat. Fiz. 157 (2), 188–207 (2008)].CrossRefzbMATHGoogle Scholar
  24. 24.
    I. A. Taimanov and S. P. Tsarev, “On the Moutard transformation and its applications to spectral theory and soliton equations,” J. Math. Sci. 170 (3), 371–387 (2010) [transl. from Sovrem. Mat., Fundam. Napr. 35, 101–117 (2010)].MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    I. A. Taimanov and S. P. Tsarev, “Faddeev eigenfunctions for two-dimensional Schrödinger operators via the Moutard transformation,” Theor. Math. Phys. 176 (3), 1176–1183 (2013) [transl. from Teor. Mat. Fiz. 176 (3), 408–416 (2013)].CrossRefzbMATHGoogle Scholar
  26. 26.
    A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations,” Sov. Math., Dokl. 30, 588–591 (1984) [transl. from Dokl. Akad. Nauk SSSR 279 (1), 20–24 (1984)].zbMATHGoogle Scholar
  27. 27.
    A. P. Veselov and S. P. Novikov, “Finite-zone, two-dimensional Schrödinger operators. Potential operators,” Sov. Math., Dokl. 30, 705–708 (1984) [transl. from Dokl. Akad. Nauk SSSR 279 (4), 784–788 (1984)].zbMATHGoogle Scholar
  28. 28.
    D. Yu, Q. P. Liu, and S. Wang, “Darboux transformation for the modified Veselov–Novikov equation,” J. Phys. A: Math. Gen. 35 (16), 3779–3785 (2002).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.CNRS (UMR 7641), Centre de Mathématiques Appliquées, École Polytechniqueroute de SaclayPalaiseau CedexFrance
  2. 2.Sobolev Institute of MathematicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations