Advertisement

The Theory of Closed 1-Forms, Levels of Quasiperiodic Functions and Transport Phenomena in Electron Systems

  • A. Ya. Maltsev
  • S. P. Novikov
Article
  • 3 Downloads

Abstract

The paper is devoted to the applications of the theory of dynamical systems to the theory of transport phenomena in metals in the presence of strong magnetic fields. More precisely, we consider the connection between the geometry of the trajectories of dynamical systems arising at the Fermi surface in the presence of an external magnetic field and the behavior of the conductivity tensor in a metal in the limit ωBτ →∞. We describe the history of the question and investigate special features of such behavior in the case of the appearance of trajectories of the most complex type on the Fermi surface of a metal.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  2. 2.
    A. Avila, P. Hubert, and A. Skripchenko, “Diffusion for chaotic plane sections of 3-periodic surfaces,” Invent. Math. 206 (1), 109–146 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Avila, P. Hubert, and A. Skripchenko, “On the Hausdorff dimension of the Rauzy gasket,” Bull. Soc. Math. France 144 (3), 539–568 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. De Leo, “The existence and measure of ergodic foliations in Novikov’s problem of the semiclassical motion of an electron,” Russ. Math. Surv. 55 (1), 166–168 (2000) [transl. from Usp. Mat. Nauk 55 (1), 181–182 (2000)].MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. De Leo, “Characterization of the set of ‘ergodic directions’ in Novikov’s problem of quasi-electron orbits in normal metals,” Russ. Math. Surv. 58 (5), 1042–1043 (2003) [transl. from Usp. Mat. Nauk 58 (5), 197–198 (2003)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. De Leo, “First-principles generation of stereographic maps for high-field magnetoresistance in normal metals: An application to Au and Ag,” Physica B 362 (1–4), 62–75 (2005).CrossRefGoogle Scholar
  7. 7.
    R. De Leo, “Topology of plane sections of periodic polyhedra with an application to the truncated octahedron,” Exp. Math. 15 (1), 109–124 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. De Leo, “A survey on quasiperiodic topology,” arXiv: 1711.01716 [math.GT].Google Scholar
  9. 9.
    R. De Leo and I. A. Dynnikov, “An example of a fractal set of plane directions having chaotic intersections with a fixed 3-periodic surface,” Russ. Math. Surv. 62 (5), 990–992 (2007) [transl. from Usp. Mat. Nauk 62 (5), 151–152 (2007)].CrossRefzbMATHGoogle Scholar
  10. 10.
    R. De Leo and I. A. Dynnikov, “Geometry of plane sections of the infinite regular skew polyhedron 4, 6,4,” Geom. Dedicata 138, 51–67 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    I. A. Dynnikov, “Proof of S.P. Novikov’s conjecture for the case of small perturbations of rational magnetic fields,” Russ. Math. Surv. 47 (3), 172–173 (1992) [transl. from Usp. Mat. Nauk 47 (3), 161–162 (1992)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    I. A. Dynnikov, “Proof of S.P. Novikov’s conjecture on the semiclassical motion of an electron,” Math. Notes 53 (5), 495–501 (1993) [transl. from Mat. Zametki 53 (5), 57–68 (1993)].MathSciNetCrossRefGoogle Scholar
  13. 13.
    I. A. Dynnikov, “Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples,” in Solitons, Geometry, and Topology: On the Crossroad (Am. Math. Soc., Providence, RI, 1997), AMS Transl., Ser. 2, 179, pp. 45–73.Google Scholar
  14. 14.
    I. A. Dynnikov, “The geometry of stability regions in Novikov’s problem on the semiclassical motion of an electron,” Russ. Math. Surv. 54 (1), 21–59 (1999) [transl. from Usp. Mat. Nauk 54 (1), 21–60 (1999)].MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    I. A. Dynnikov, “Interval identification systems and plane sections of 3-periodic surfaces,” Proc. Steklov Inst. Math. 263, 65–77 (2008) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 263, 72–84 2008)].MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    I. A. Dynnikov and A. Ya. Maltsev, “Topological characteristics of electronic spectra of single crystals,” J. Exp. Theor. Phys. 85 (1), 205–208 (1997) [transl. from Zh. Eksp. Teor. Fiz. 112 (1), 371–378 (1997)].CrossRefGoogle Scholar
  17. 17.
    I. A. Dynnikov and S. P. Novikov, “Topology of quasi-periodic functions on the plane,” Russ. Math. Surv. 60 (1), 1–26 (2005) [transl. from Usp. Mat. Nauk 60 (1), 3–28 (2005)].CrossRefzbMATHGoogle Scholar
  18. 18.
    I. Dynnikov and A. Skripchenko, “On typical leaves of a measured foliated 2-complex of thin type,” in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Ed. by V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever (Am. Math. Soc., Providence, RI, 2014), AMS Transl., Ser. 2, 234; Adv. Math. Sci. 67, pp. 173–199; arXiv: 1309.4884 [math.GT].Google Scholar
  19. 19.
    I. Dynnikov and A. Skripchenko, “Symmetric band complexes of thin type and chaotic sections which are not quite chaotic,” Trans. Moscow Math. Soc. 2015, 251–269 (2015) [repr. from Tr. Mosk. Mat. Obshch. 76 (2), 287–308 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. I. Kaganov and V. G. Peschansky, “Galvano-magnetic phenomena today and forty years ago,” Phys. Rep. 372 (6), 445–487 (2002).CrossRefGoogle Scholar
  21. 21.
    C. Kittel, Quantum Theory of Solids (J. Wiley and Sons, New York, 1963).zbMATHGoogle Scholar
  22. 22.
    I. M. Lifshitz, M. Ia. Azbel’, and M. I. Kaganov, “The theory of galvanomagnetic effects in metals,” Sov. Phys. JETP 4 (1), 41–54 (1957) [transl. from Zh. Eksp. Teor. Fiz. 31 (1), 63–79 (1956)].zbMATHGoogle Scholar
  23. 23.
    I. M. Lifshits, M. Ya. Azbel’, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).zbMATHGoogle Scholar
  24. 24.
    I. M. Lifshitz and M. I. Kaganov, “Some problems of the electron theory of metals. I: Classical and quantum mechanics of electrons in metals,” Sov. Phys. Usp. 2 (6), 831–855 (1960) [transl. from Usp. Fiz. Nauk 69 (3), 419–458 (1959)].MathSciNetCrossRefGoogle Scholar
  25. 25.
    I. M. Lifshitz and M. I. Kaganov, “Some problems of the electron theory of metals. II: Statistical mechanics and thermodynamics of electrons in metals,” Sov. Phys. Usp. 5 (6), 878–907 (1963) [transl. from Usp. Fiz. Nauk 78 (3), 411–461 (1962)].CrossRefGoogle Scholar
  26. 26.
    I. M. Lifshitz and M. I. Kaganov, “Some problems of the electron theory of metals. III: Kinetic properties of electrons in metals,” Sov. Phys. Usp. 8 (6), 805–851 (1966) [transl. from Usp. Fiz. Nauk 87 (3), 389–469 (1965)].CrossRefGoogle Scholar
  27. 27.
    I. M. Lifshitz and V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. I,” Sov. Phys. JETP 8 (5), 875–883 (1959) [transl. from Zh. Eksp. Teor. Fiz. 35 (5), 1251–1264 (1958)].Google Scholar
  28. 28.
    I. M. Lifshitz and V. G. Peschanskii, “Galvanomagnetic characteristics of metals with open Fermi surfaces. II,” Sov. Phys. JETP 11 (1), 137–141 (1960) [transl. from Zh. Eksp. Teor. Fiz. 38 (1), 188–193 (1960)].Google Scholar
  29. 29.
    A. Ya. Mal’tsev, “Anomalous behavior of the electrical conductivity tensor in strong magnetic fields,” J. Exp. Theor. Phys. 85 (5), 934–942 (1997) [transl. from Zh. Eksp. Teor. Fiz. 112 (5), 1710–1726 (1997)].CrossRefGoogle Scholar
  30. 30.
    A. Ya. Maltsev, “Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas,” J. Math. Phys. 45 (3), 1128–1149 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    A. Ya. Maltsev, “On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface,” J. Exp. Theor. Phys. 124 (5), 805–831 (2017) [transl. from Zh. Eksp. Teor. Fiz. 151 (5), 944–973 (2017)].CrossRefGoogle Scholar
  32. 32.
    A. Ya. Maltsev, “Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces,” J. Exp. Theor. Phys. 125 (5), 896–905 (2017) [transl. from Zh. Eksp. Teor. Fiz. 152 (5), 1053–1064 (2017)].CrossRefGoogle Scholar
  33. 33.
    A. Ya. Maltsev and S. P. Novikov, “Quasiperiodic functions and dynamical systems in quantum solid state physics,” Bull. Braz. Math. Soc. 34 (1), 171–210 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    A. Ya. Maltsev and S. P. Novikov, “Dynamical systems, topology, and conductivity in normal metals,” J. Stat. Phys. 115 (1–2), 31–46 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S. P. Novikov, “The Hamiltonian formalism and a many-valued analogue of Morse theory,” Russ. Math. Surv. 37 (5), 1–56 (1982) [transl. from Usp. Mat. Nauk 37 (5), 3–49 (1982)].CrossRefzbMATHGoogle Scholar
  36. 36.
    S. P. Novikov, “Levels of quasiperiodic functions on a plane, and Hamiltonian systems,” Russ. Math. Surv. 54 (5), 1031–1032 (1999) [transl. from Usp. Mat. Nauk 54 (5), 147–148 (1999)].MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    S. P. Novikov and A. Ya. Mal’tsev, “Topological quantum characteristics observed in the investigation of the conductivity in normal metals,” JETP Lett. 63 (10), 855–860 (1996) [transl. from Pis’ma Zh. Eksp. Teor. Fiz. 63 (10), 809–813 (1996)].CrossRefGoogle Scholar
  38. 38.
    S. P. Novikov and A. Ya. Mal’tsev, “Topological phenomena in normal metals,” Phys. Usp. 41 (3), 231–239 (1998) [transl. from Usp. Fiz. Nauk 168 (3), 249–258 (1998)].CrossRefGoogle Scholar
  39. 39.
    A. Skripchenko, “Symmetric interval identification systems of order three,” Discrete Contin. Dyn. Sys. 32 (2), 643–656 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    A. Skripchenko, “On connectedness of chaotic sections of some 3-periodic surfaces,” Ann. Global Anal. Geom. 43 (3), 253–271 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, London, 1972).CrossRefzbMATHGoogle Scholar
  42. 42.
    A. V. Zorich, “A problem of Novikov on the semiclassical motion of an electron in a uniform almost rational magnetic field,” Russ. Math. Surv. 39 (5), 287–288 (1984) [transl. from Usp. Mat. Nauk 39 (5), 235–236 (1984)].CrossRefzbMATHGoogle Scholar
  43. 43.
    A. Zorich, “Asymptotic flag of an orientable measured foliation on a surface,” in Geometric Study of Foliations: Proc. Int. Symp./Workshop, Tokyo, 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), pp. 479–498.Google Scholar
  44. 44.
    A. Zorich, “Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents,” Ann. Inst. Fourier 46 (2), 325–370 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    A. Zorich, “On hyperplane sections of periodic surfaces,” in Solitons, Geometry, and Topology: On the Crossroad (Am. Math. Soc., Providence, RI, 1997), AMS Transl., Ser. 2, 179, pp. 173–189.Google Scholar
  46. 46.
    A. Zorich, “Deviation for interval exchange transformations,” Ergodic Theory Dyn. Syst. 17 (6), 1477–1499 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    A. Zorich, “How do the leaves of a closed 1-form wind around a surface?,” in Pseudoperiodic Topology, Ed. by V. I. Arnold, M. Kontsevich, and A. Zorich (Am. Math. Soc., Providence, RI, 1999), AMS Transl., Ser. 2, 197; Adv. Math. Sci. 46, pp. 135–178.Google Scholar
  48. 48.
    A. Zorich, “Flat surfaces,” in Frontiers in Number Theory, Physics, and Geometry, Vol. 1: On Random Matrices, Zeta Functions, and Dynamical Systems: Papers from the Meeting, Les Houches, France, 2003, Ed. by P. Cartier et al. (Springer, Berlin, 2006), pp. 439–585.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.L.D. Landau Institute for Theoretical Physics of Russian Academy of SciencesChernogolovkaRussia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations