Integrable 3D Statistical Models on Six-Valent Graphs

  • I. G. KorepanovEmail author
  • D. V. Talalaev
  • G. I. Sharygin


The paper is devoted to the study of a special statistical model on graphs with vertices of degrees 6 and 1. We show that this model is invariant with respect to certain Roseman moves if one regards the graph as the singular point set of the diagram of a 2-knot. Our approach is based on the properties of the tetrahedron cohomology complex.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Aschieri, L. Cantini, and B. Jurčo, “Nonabelian bundle gerbes, their differential geometry and gauge theory,” Commun. Math. Phys. 254 (2), 367–400 (2005); arxiv: hep-th/0312154.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Baez and U. Schreiber, “Higher gauge theory: 2-connections on 2-bundles,” arXiv: hep-th/0412325.Google Scholar
  3. 3.
    J. S. Carter, M. Elhamdadi, and M. Saito, “Homology theory for the set-theoretic Yang–Baxter equation and knot invariants from generalizations of quandles,” Fundam. Math. 184, 31–54 (2004); arXiv:math/0206255 [math.GT].MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, and M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces,” Trans. Am. Math. Soc. 355 (10), 3947–3989 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. S. Cattaneo, P. Cotta-Ramusino, J. Fröhlich, and M. Martellini, “Topological BF theories in 3 and 4 dimensions,” J. Math. Phys. 36 (11), 6137–6160 (1995); arXiv: hep-th/9505027.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79 (8), 2554–2558 (1982).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I. G. Korepanov, “Geometric torsions and an Atiyah-style topological field theory,” Theor. Math. Phys. 158 (3), 344–354 (2009) [transl. from Teor. Mat. Fiz. 158 (3), 405–418 (2009)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    I. G. Korepanov, G. I. Sharygin, and D. V. Talalaev, “Cohomologies of n-simplex relations,” Math. Proc. Cambridge Philos. Soc. 161 (2), 203–222 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    W. A. Little, “The existence of persistent states in the brain,” Math. Biosci. 19, 101–120 (1974).CrossRefzbMATHGoogle Scholar
  10. 10.
    S. V. Matveev, “Distributive groupoids in knot theory,” Math. USSR, Sb. 47 (1), 73–83 (1984) [transl. from Mat. Sb. 119 (1), 78–88 (1982)].CrossRefzbMATHGoogle Scholar
  11. 11.
    P. Mnëv, “Notes on simplicial BF theory,” Moscow Math. J. 9 (2), 371–410 (2009).MathSciNetzbMATHGoogle Scholar
  12. 12.
    D. Roseman, “Reidemeister-type moves for surfaces in four-dimensional space,” in Knot Theory (Pol. Acad. Sci., Inst. Math., Warszawa, 1998), Banach Cent. Publ. 42, pp. 347–380.Google Scholar
  13. 13.
    D. V. Talalaev, “Zamolodchikov tetrahedral equation and higher Hamiltonians of 2d quantum integrable systems,” SIGMA, Symmetry Integrability Geom. Methods Appl. 13, 031 (2017).Google Scholar
  14. 14.
    E. Witten, “Quantum field theory and the Jones polynomial,” Commun. Math. Phys. 121 (3), 351–399 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. B. Zamolodchikov, “Tetrahedra equations and integrable systems in three-dimensional space,” Sov. Phys. JETP 52 (2), 325–336 (1980) [transl. from Zh. Eksp. Teor. Fiz. 79 (2), 641–664 (1980)].MathSciNetGoogle Scholar
  16. 16.
    E. C. Zeeman, “Twisting spun knots,” Trans. Am. Math. Soc. 115, 471–495 (1965).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. G. Korepanov
    • 1
    Email author
  • D. V. Talalaev
    • 2
    • 3
  • G. I. Sharygin
    • 2
    • 3
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia
  3. 3.Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute,”MoscowRussia

Personalised recommendations