Advertisement

Hirzebruch Functional Equation: Classification of Solutions

  • Elena Yu. BunkovaEmail author
Article

Abstract

The Hirzebruch functional equation is \(\sum\nolimits_{i = 1}^n {\prod\nolimits_{j \ne i} {(1/f({z_j} - {z_i})) = c} } \) with constant c and initial conditions f(0) = 0 and f'(0) = 1. In this paper we find all solutions of the Hirzebruch functional equation for n ≤ 6 in the class of meromorphic functions and in the class of series. Previously, such results have been known only for n ≤ 4. The Todd function is the function determining the two-parameter Todd genus (i.e., the χa,b-genus). It gives a solution to the Hirzebruch functional equation for any n. The elliptic function of level N is the function determining the elliptic genus of level N. It gives a solution to the Hirzebruch functional equation for n divisible by N. A series corresponding to a meromorphic function f with parameters in U ⊂ ℂk is a series with parameters in the Zariski closure of U in ℂk, such that for the parameters in U it coincides with the series expansion at zero of f. The main results are as follows: (1) Any series solution of the Hirzebruch functional equation for n = 5 corresponds either to the Todd function or to the elliptic function of level 5. (2) Any series solution of the Hirzebruch functional equation for n = 6 corresponds either to the Todd function or to the elliptic function of level 2, 3, or 6. This gives a complete classification of complex genera that are fiber multiplicative with respect to ℂPn−1 for n ≤ 6. A topological application of this study is an effective calculation of the coefficients of elliptic genera of level N for N = 2,..., 6 in terms of solutions of a differential equation with parameters in an irreducible algebraic variety in ℂ4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Braden and V. M. Buchstaber, “The general analytic solution of a functional equation of addition type,” SIAM J. Math. Anal. 28 (4), 903–923 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    H. W. Braden and K. E. Feldman, “Functional equations and the generalised elliptic genus,” J. Nonlinear Math. Phys. 12 (Suppl. 1), 74–85 (2005).Google Scholar
  3. 3.
    V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and twovalued algebraic groups,” Russ. Math. Surv. 45 (3), 213–215 (1990) [transl. from Usp. Mat. Naukn 45 (3), 185–186 (1990)].MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. M. Buchstaber, “Cobordisms, manifolds with torus action, and functional equations,” Proc. Steklov Inst. Math. 302, 48–87 (2018) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 302, 57–97 (2018)].Google Scholar
  5. 5.
    V. M. Buchstaber and E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations,” Proc. Steklov Inst. Math. 290, 125–137 (2015) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 136–148 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    V. M. Buchstaber and E. Yu. Netay, “CP(2)-multiplicative Hirzebruch genera and elliptic cohomology,” Russ. Math. Surv. 69 (4), 757–759 (2014) [transl. from Usp. Mat. Nauk 69 (4), 181–182 (2014)].CrossRefzbMATHGoogle Scholar
  7. 7.
    V. M. Buchstaber and I. V. Netay, “Hirzebruch functional equation and elliptic functions of level d,” Funct. Anal. Appl. 49 (4), 239–252 (2015) [transl. from Funkts. Anal. Prilozh. 49 (4), 1–17 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    V. M. Buchstaber and T. E. Panov, Toric Topology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.CrossRefzbMATHGoogle Scholar
  9. 9.
    V. M. Buchstaber and A. V. Ustinov, “Coefficient rings of formal group laws,” Sb. Math. 206 (11), 1524–1563 (2015) [transl. from Mat. Sb. 206 (11), 19–60 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. M. Buchstaber and A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera,” Math. Z. 223 (4), 595–607 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E. Yu. Bunkova, “Elliptic function of level 4,” Proc. Steklov Inst. Math. 294, 201–214 (2016) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 216–229 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. Yu. Bunkova, V. M. Buchstaber, and A. V. Ustinov, “Coefficient rings of Tate formal groups determining Krichever genera,” Proc. Steklov Inst. Math. 292, 37–62 (2016) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 292, 43–68 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed. (Springer, Berlin, 1966).CrossRefzbMATHGoogle Scholar
  14. 14.
    F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms (Vieweg, Braunschweig, 1992), Aspects Math. E20.CrossRefzbMATHGoogle Scholar
  15. 15.
    I. M. Krichever, “Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles,” Funct. Anal. Appl. 14 (4), 282–290 (1980) [transl. from Funkts. Anal. Prilozh. 14 (4), 45–54 (1980)].CrossRefzbMATHGoogle Scholar
  16. 16.
    I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions,” Math. Notes 47 (2), 132–142 (1990) [transl. from Mat. Zametki 47 (2), 34–45 (1990)].MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    I. Krichever, “Vector bundles and Lax equations on algebraic curves,” Commun. Math. Phys. 229 (2), 229–269 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Lang, Elliptic Functions (Springer, New York, 1987).CrossRefzbMATHGoogle Scholar
  19. 19.
    O. R. Musin, “On rigid Hirzebruch genera,” Moscow Math. J. 11 (1), 139–147 (2011).MathSciNetzbMATHGoogle Scholar
  20. 20.
    S. P. Novikov, “The methods of algebraic topology from the viewpoint of cobordism theory,” Math. USSR, Izv. 1 (4), 827–913 (1967) [transl. from Izv. Akad. Nauk SSSR, Ser. Mat. 31 (4), 855–951 (1967)].CrossRefzbMATHGoogle Scholar
  21. 21.
    S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques,” Topology 26 (2), 143–151 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    J. B. von Oehsen, “Elliptic genera of level N and Jacobi polynomials,” Proc. Am. Math. Soc. 122 (1), 303–312 (1994).MathSciNetzbMATHGoogle Scholar
  23. 23.
    O. K. Sheinman, “Semisimple Lie algebras and Hamiltonian theory of finite-dimensional Lax equations with spectral parameter on a Riemann surface,” Proc. Steklov Inst. Math. 290, 178–188 (2015) [transl. from Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 191–201 (2015); 294, 325–327 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras,” Theor. Math. Phys. 185 (3), 1816–1831 (2015) [transl. from Teor. Mat. Fiz. 185 (3), 527–544 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    O. K. Sheinman, “Global current algebras and localization on Riemann surfaces,” Moscow Math. J. 15 (4), 833–846 (2015).MathSciNetzbMATHGoogle Scholar
  26. 26.
    O. K. Sheinman, “Lax operator algebras and integrable systems,” Russ. Math. Surv. 71 (1), 109–156 (2016) [transl. from Usp. Mat. Nauk 71 (1), 117–168 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part II: The Transcendental Functions (Cambridge Univ. Press, Cambridge, 1996).Google Scholar
  28. 28.
    E. Witten, “Elliptic genera and quantum field theory,” Commun. Math. Phys. 109, 525–536 (1987).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations