Potentials on a Compact Riemann Surface

  • E. M. Chirka


Fundamental concepts of potential theory on compact Riemann surfaces are defined that generalize the corresponding concepts of logarithmic potential theory on the complex plane. The standard properties of these quantities are proved, and relationships between them are established.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Aptekarev, G. López Lagomasino, and A. Martínez-Finkelshtein, “On Nikishin systems with discrete components and weak asymptotics of multiple orthogonal polynomials,” Usp. Mat. Nauk 72 (3), 3–64 (2017) [Russ. Math. Surv. 72, 389–449 (2017)].MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. I. Aptekarev and V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants,” Mat. Sb. 201 (2), 29–78 (2010) [Sb. Math. 201, 183–234 (2010)].MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Buser, Geometry and Spectra of Compact Riemann Surfaces (Birkhäuser, Boston, 1992).zbMATHGoogle Scholar
  4. 4.
    V. I. Buslaev and S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 272–279 (2015) [Proc. Steklov Inst. Math. 290, 256–263 (2015)].zbMATHGoogle Scholar
  5. 5.
    E. M. Chirka, Riemann Surfaces (Steklov Math. Inst., Moscow, 2006), Lekts. Kursy Nauchno-Obrazov. Tsentra 1.zbMATHGoogle Scholar
  6. 6.
    E. M. Chirka, “Harnack inequalities, Kobayashi distances and holomorphic motions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 279, 206–218 (2012) [Proc. Steklov Inst. Math. 279, 194–206 (2012)].MathSciNetzbMATHGoogle Scholar
  7. 7.
    E. M. Chirka, “On the ∂-problem with L2-estimates on a Riemann surface,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 280–292 (2015) [Proc. Steklov Inst. Math. 290, 264–276 (2015)].Google Scholar
  8. 8.
    G. de Rham, Variétés différentiables. Formes, courants, formes harmoniques (Hermann, Paris, 1955); Engl. transl.: Differentiable Manifolds: Forms, Currents, Harmonic Forms (Springer, Berlin, 1984).zbMATHGoogle Scholar
  9. 9.
    H. V. Farkas and I. Kra, Riemann Surfaces (Springer, New York, 1980).CrossRefzbMATHGoogle Scholar
  10. 10.
    O. Frostman, Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions (Gleerup, Lund, 1935), Meddelanden Lunds Univ. Mat. Sem. 3.zbMATHGoogle Scholar
  11. 11.
    A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 157, 31–48 (1981) [Proc. Steklov Inst. Math. 157, 31–50 (1983)].zbMATHGoogle Scholar
  12. 12.
    A. A. Gonchar and E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials,” Mat. Sb. 125 (1), 117–127 (1984) [Math. USSR, Sb. 53 (1), 119–130 (1986)].MathSciNetGoogle Scholar
  13. 13.
    A. A. Gonchar and E. A. Rakhmanov, “On the equilibrium problem for vector potentials,” Usp. Mat. Nauk 40 (4), 155–156 (1985) [Russ. Math. Surv. 40 (4), 183–184 (1985)].MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions,” Mat. Sb. 134 (3), 306–352 (1987) [Math. USSR, Sb. 62 (2), 305–348 (1989)].zbMATHGoogle Scholar
  15. 15.
    A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions,” Mat. Sb. 188 (5), 33–58 (1997) [Sb. Math. 188, 671–696 (1997)].MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    W. K. Hayman and P. B. Kennedy, Subharmonic Functions (Academic, London, 1976), Vol.1.zbMATHGoogle Scholar
  17. 17.
    L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1: Distribution Theory and Fourier Analysis (Springer, Berlin, 1983).zbMATHGoogle Scholar
  18. 18.
    L. Hörmander, Notions of Convexity (Birkhäuser, Basel, 1994).zbMATHGoogle Scholar
  19. 19.
    N.-G. Kang and N. G. Makarov, “Calculus of conformal fields on a compact Riemann surface,” arXiv: 1708.07361 [math-ph].Google Scholar
  20. 20.
    A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface,” Usp. Mat. Nauk 72 (4), 95–130 (2017) [Russ. Math. Surv. 72, 671–706 (2017)].CrossRefzbMATHGoogle Scholar
  21. 21.
    N. S. Landkof, Foundations of Modern Potential Theory (Nauka, Moscow, 1966; Springer, Berlin, 1972).CrossRefzbMATHGoogle Scholar
  22. 22.
    D. Mumford, Tata Lectures on Theta. I, II (Birkhäuser, Boston, 1983, 1984).zbMATHGoogle Scholar
  23. 23.
    E. A. Rakhmanov, “The Gonchar–Stahl ρ2-theorem and associated directions in the theory of rational approximations of analytic functions,” Mat. Sb. 207 (9), 57–90 (2016) [Sb. Math. 207, 1236–1266 (2016)].MathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Ross and D. Witt Nyström, “The Dirichlet problem for the complex homogeneous Monge–Ampère equation,” arXiv: 1712.00405 [math.CV].Google Scholar
  25. 25.
    W. Rudin, Functional Analysis (McGraw-Hill, New York, 1973).zbMATHGoogle Scholar
  26. 26.
    B. Skinner, “Logarithmic potential theory on Riemann surfaces,” PhD Thesis (Calif. Inst. Technol., Pasadena, 2015).Google Scholar
  27. 27.
    S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation,” Usp. Mat. Nauk 70 (5), 121–174 (2015) [Russ. Math. Surv. 70, 901–951 (2015)].CrossRefzbMATHGoogle Scholar
  28. 28.
    M. Tsuji, Potential Theory in Modern Function Theory (Maruzen Co., Tokyo, 1959).zbMATHGoogle Scholar
  29. 29.
    I. N. Vekua, Generalized Analytic Functions, 1st ed. (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1962); 2nd ed. (Nauka, Moscow, 1988) [in Russian].zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations