Advertisement

On a New Approach to the Problem of Distribution of Zeros of Hermite—Padé Polynomials for a Nikishin System

  • S. P. Suetin
Article
  • 18 Downloads

Abstract

A new approach to the problem of the zero distribution of type I Hermite—Padé polynomials for a pair of functions f1, f2 forming a Nikishin system is discussed. Unlike the traditional vector approach, we give an answer in terms of a scalar equilibrium problem with harmonic external field which is posed on a two-sheeted Riemann surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Aptekarev, “Strong asymptotics of multiply orthogonal polynomials for Nikishin systems,” Mat. Sb. 190 (5), 3–44 (1999) [Sb. Math. 190, 631–669 (1999)].MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. I. Aptekarev, “Asymptotics of Hermite–Padé approximants for two functions with branch points,” Dokl. Akad. Nauk 422 (4), 443–445 (2008) [Dokl. Math. 78 (2), 717–719 (008)].MathSciNetzbMATHGoogle Scholar
  3. 3.
    A. I. Aptekarev, A. I. Bogolyubskii, and M. L. Yattselev, “Convergence of ray sequences of Frobenius–Padé approximants,” Mat. Sb. 208 (3), 4–27 (2017) [Sb. Math. 208, 313–334 (2017)].MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. I. Aptekarev, A. B. J. Kuijlaars, and W. Van Assche, “Asymptotics of Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0),” Int. Math. Res. Pap., doi: 10.1093/imrp/rpm007 (2008).Google Scholar
  5. 5.
    A. I. Aptekarev and V. G. Lysov, “Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants,” Mat. Sb. 201 (2), 29–78 (2010) [Sb. Math. 201, 183–234 (2010)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. I. Aptekarev and M. L. Yattselev, “Padé approximants for functions with branch points—strong asymptotics of Nuttall–Stahl polynomials,” Acta Math. 215 (2), 217–280 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    L. Baratchart, H. Stahl, and M. Yattselev, “Weighted extremal domains and best rational approximation,” Adv. Math. 229 (1), 357–407 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    D. Barrios Rolanía, J. S. Geronimo, and G. López Lagomasino, “High-order recurrence relations, Hermite–Padé approximation and Nikishin systems,” Mat. Sb. 209 (3), 102–137 (2018) [Sb. Math. 209, 385–420 (2018)].MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. I. Buslaev, “Convergence of multipoint Padé approximants of piecewise analytic functions,” Mat. Sb. 204 (2), 39–72 (2013) [Sb. Math. 204, 190–222 (2013)].MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    V. I. Buslaev, “Convergence of m-point Padé approximants of a tuple of multivalued analytic functions,” Mat. Sb. 206 (2), 5–30 (2015) [Sb. Math. 206, 175–200 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    V. I. Buslaev, “An analogue of Polya’s theorem for piecewise holomorphic functions,” Mat. Sb. 206 (12), 55–69 (2015) [Sb. Math. 206, 1707–1721 (2015)].CrossRefzbMATHGoogle Scholar
  12. 12.
    V. I. Buslaev, “An analog of Gonchar’s theorem for the m-point version of Leighton’s conjecture,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 293, 133–145 (2016) [Proc. Steklov Inst. Math. 293, 127–139 (2016)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. I. Buslaev, A. Martínez-Finkelshtein, and S. P. Suetin, “Method of interior variations and existence of S-compact sets,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 279, 31–58 (2012) [Proc. Steklov Inst. Math. 279, 25–51 (2012)].MathSciNetzbMATHGoogle Scholar
  14. 14.
    V. I. Buslaev and S. P. Suetin, “On equilibrium problems related to the distribution of zeros of the Hermite–Padé polynomials,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 272–279 (2015) [Proc. Steklov Inst. Math. 290, 256–263 (2015)].zbMATHGoogle Scholar
  15. 15.
    V. I. Buslaev and S. P. Suetin, “On the existence of compacta of minimal capacity in the theory of rational approximation of multi-valued analytic functions,” J. Approx. Theory 206, 48–67 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    E. M. Chirka, Riemann Surfaces (Steklov Math. Inst., Moscow, 2006), Lekts. Kursy Nauchno-Obrazov. Tsentra 1.zbMATHGoogle Scholar
  17. 17.
    A. A. Gonchar and E. A. Rakhmanov, “On convergence of simultaneous Padé approximants for systems of functions of Markov type,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 157, 31–48 (1981) [Proc. Steklov Inst. Math. 157, 31–50 (1983)].zbMATHGoogle Scholar
  18. 18.
    A. A. Gonchar and E. A. Rakhmanov, “Equilibrium distributions and degree of rational approximation of analytic functions,” Mat. Sb. 134 (3), 306–352 (1987) [Math. USSR, Sb. 62 (2), 305–348 (1989)].zbMATHGoogle Scholar
  19. 19.
    A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin, “Hermite–Padé approximants for systems of Markov-type functions,” Mat. Sb. 188 (5), 33–58 (1997) [Sb. Math. 188, 671–696 (1997)].MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. A. Gonchar and S. P. Suetin, On Padé Approximants of Markov-Type Meromorphic Functions (Mat. Inst. im. V.A. Steklova, Moscow, 2004), Sovrem. Probl. Mat. 5 [Proc. Steklov Inst. Math. 272 (Suppl. 2), S58–S95 (2011)].Google Scholar
  21. 21.
    N. R. Ikonomov, R. K. Kovacheva, and S. P. Suetin, “Some numerical results on the behavior of zeros of polynomials,” arXiv: 1501.07090 [math.CV].Google Scholar
  22. 22.
    N. R. Ikonomov, R. K. Kovacheva, and S. P. Suetin, “On the limit zero distribution of type I Hermite–Padé polynomials,” arXiv: 1506.08031 [math.CV].Google Scholar
  23. 23.
    N. R. Ikonomov, R. K. Kovacheva, and S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and convergence properties of Hermite approximants for multivalued analytic functions,” arXiv: 1603.03314 [math.CV].Google Scholar
  24. 24.
    A. V. Komlov, N. G. Kruzhilin, R. V. Palvelev, and S. P. Suetin, “Convergence of Shafer quadratic approximants,” Usp. Mat. Nauk 71 (2), 205–206 (2016) [Russ. Math. Surv. 71, 373–375 (2016)].CrossRefzbMATHGoogle Scholar
  25. 25.
    A. V. Komlov, R. V. Palvelev, S. P. Suetin, and E. M. Chirka, “Hermite–Padé approximants for meromorphic functions on a compact Riemann surface,” Usp. Mat. Nauk 72 (4), 95–130 (2017) [Russ. Math. Surv. 72, 671–706 (2017)].CrossRefzbMATHGoogle Scholar
  26. 26.
    A. V. Komlov and S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials,” Usp. Mat. Nauk 70 (6), 211–212 (2015) [Russ. Math. Surv. 70, 1179–1181 (2015)].CrossRefzbMATHGoogle Scholar
  27. 27.
    N. S. Landkof, Foundations of Modern Potential Theory (Nauka, Moscow, 1966; Springer, Berlin, 1972).CrossRefzbMATHGoogle Scholar
  28. 28.
    M. A. Lapik, “Families of vector measures which are equilibrium measures in an external field,” Mat. Sb. 206 (2), 41–56 (2015) [Sb. Math. 206, 211–224 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    G. López Lagomasino and W. Van Assche, “Riemann–Hilbert analysis for a Nikishin system,” Mat. Sb. 209 (7), 106–138 (2018) [Sb. Math. 209, doi: 10.1070/SM8889 (2018)]; arXiv: 1612.07108 [math.CA].MathSciNetCrossRefGoogle Scholar
  30. 30.
    D. S. Lubinsky, A. Sidi, and H. Stahl, “Asymptotic zero distribution of biorthogonal polynomials,” J. Approx. Theory 190, 26–49 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin, “Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall’s work 25 years later,” in Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications (Am. Math. Soc., Providence, RI, 2012), Contemp. Math. 578, pp. 165–193.CrossRefGoogle Scholar
  32. 32.
    A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin, “Asymptotics of type I Hermite–Padé polynomials for semiclassical functions,” in Modern Trends in Constructive Function Theory (Am. Math. Soc., Providence, RI, 2016), Contemp. Math. 661, pp. 199–228; arXiv: 1502.01202 [math.CA].CrossRefGoogle Scholar
  33. 33.
    E. M. Nikishin, “On simultaneous Padé approximants,” Mat. Sb. 113 (4), 499–519 (1980) [Math. USSR, Sb. 41 (4), 409–425 (1982)].MathSciNetzbMATHGoogle Scholar
  34. 34.
    E. M. Nikishin, “The asymptotic behavior of linear forms for joint Padé approximations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 33–41 (1986) [Sov. Math. 30 (2), 43–52 (1986)].zbMATHGoogle Scholar
  35. 35.
    E. M. Nikishin and V. N. Sorokin, Rational Approximations and Orthogonality (Nauka, Moscow, 1988; Am. Math. Soc., Providence, RI, 1991).CrossRefzbMATHGoogle Scholar
  36. 36.
    J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials,” J. Approx. Theory 42 (4), 299–386 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    J. Nuttall, “Asymptotics of generalized Jacobi polynomials,” Constr. Approx. 2 (1), 59–77 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    J. Nuttall and G. M. Trojan, “Asymptotics of Hermite–Padé polynomials for a set of functions with different branch points,” Constr. Approx. 3 (1), 13–29 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    E. A. Rakhmanov, “Orthogonal polynomials and S-curves,” in Recent Advances in Orthogonal Polynomials, Special Functions, and Their Applications (Am. Math. Soc., Providence, RI, 2012), Contemp. Math. 578, pp. 195–239.CrossRefGoogle Scholar
  40. 40.
    E. A. Rakhmanov, “The Gonchar–Stahl ρ2-theorem and associated directions in the theory of rational approximations of analytic functions,” Mat. Sb. 207 (9), 57–90 (2016) [Sb. Math. 207, 1236–1266 (2016)].MathSciNetCrossRefGoogle Scholar
  41. 41.
    E. A. Rakhmanov, “Zero distribution for Angelesco Hermite–Padé polynomials,” Usp. Mat. Nauk 73 (3), 89–156 (2018) [Russ. Math. Surv. 73, doi: 10.1070/RM9832 (2018)]; arXiv: 1712.07055 [math.CV].CrossRefGoogle Scholar
  42. 42.
    E. A. Rakhmanov and S. P. Suetin, “The distribution of the zeros of the Hermite–Padé polynomials for a pair of functions forming a Nikishin system,” Mat. Sb. 204 (9), 115–160 (2013) [Sb. Math. 204, 1347–1390 (2013)].MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    H. Stahl, “Asymptotics of Hermite–Padé polynomials and related convergence results: A summary of results,” in Nonlinear Numerical Methods and Rational Approximation (D. Reidel, Dordrecht, 1988), Math. Appl. 43, pp. 23–53.CrossRefGoogle Scholar
  44. 44.
    H. Stahl, “The convergence of Padé approximants to functions with branch points,” J. Approx. Theory 91 (2), 139–204 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    H. R. Stahl, “Sets of minimal capacity and extremal domains,” arXiv: 1205.3811 [math.CA].Google Scholar
  46. 46.
    S. P. Suetin, “Distribution of the zeros of Padé polynomials and analytic continuation,” Usp. Mat. Nauk 70 (5), 121–174 (2015) [Russ. Math. Surv. 70, 901–951 (2015)].CrossRefzbMATHGoogle Scholar
  47. 47.
    S. P. Suetin, “Zero distribution of Hermite–Padé polynomials and localization of branch points of multivalued analytic functions,” Usp. Mat. Nauk 71 (5), 183–184 (2016) [Russ. Math. Surv. 71, 976–978 (2016)].CrossRefzbMATHGoogle Scholar
  48. 48.
    S. P. Suetin, “An analog of Pólya’s theorem for multivalued analytic functions with finitely many branch points,” Mat. Zametki 101 (5), 779–791 (2017) [Math. Notes 101, 888–898 (2017)].MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    S. P. Suetin, “On the distribution of the zeros of the Hermite–Padé polynomials for a quadruple of functions,” Usp. Mat. Nauk 72 (2), 191–192 (2017) [Russ. Math. Surv. 72, 375–377 (2017)].CrossRefzbMATHGoogle Scholar
  50. 50.
    S. P. Suetin, “Distribution of the zeros of Hermite–Padé polynomials for a complex Nikishin system,” Usp. Mat. Nauk 73 (2), 183–184 (2018) [Russ. Math. Surv. 73, doi: 10.1070/RM9819 (2018)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations