Advertisement

Analysis in Algebras and Modules

  • V. V. Zharinov
Article
  • 15 Downloads

Abstract

An algebraic technique adapted to the problems of fundamental theoretical physics is presented. The exposition is an elaboration and an extension of the methods used in different areas of mathematical physics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Gushchin, “Solvability of the Dirichlet problem for an inhomogeneous second-order elliptic equation,” Mat. Sb. 206 (10), 71–102 (2015) [Sb. Math. 206, 1410–1439 (2015)].CrossRefGoogle Scholar
  2. 2.
    A. K. Gushchin, “Lp-estimates for the nontangential maximal function of the solution to a second-order elliptic equation,” Mat. Sb. 207 (10), 28–55 (2016) [Sb. Math. 207, 1384–1409 (2016)].CrossRefGoogle Scholar
  3. 3.
    M. O. Katanaev, “On homogeneous and isotropic universe,” Mod. Phys. Lett. A 30 (34), 1550186 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    M. O. Katanaev, “Cosmological models with homogeneous and isotropic spatial sections,” Teor. Mat. Fiz. 191 (2), 219–227 (2017) [Theor. Math. Phys. 191, 661–668 (2017)].MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    S. V. Kozyrev, “Ultrametricity in the theory of complex systems,” Teor. Mat. Fiz. 185 (2), 346–360 (2015) [Theor. Math. Phys. 185, 1665–1677 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. MacLane, Homology (Springer, Berlin, 1963), Grundl. Math. Wiss. 114.CrossRefzbMATHGoogle Scholar
  7. 7.
    N. G. Marchuk, “Demonstration representation and tensor products of Clifford algebras,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 154–165 (2015) [Proc. Steklov Inst. Math. 290, 143–154 (2015)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    N. G. Marchuk and D. S. Shirokov, “General solutions of one class of field equations,” Rep. Math. Phys. 78 (3), 305–326 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett. 113 (3), 30005 (2016).CrossRefGoogle Scholar
  10. 10.
    V. V. Zharinov, Algebraic and Geometric Foundation of Mathematical Physics (Steklov Math. Inst., Moscow, 2008), Lekts. Kursy Nauchno-Obrazov. Tsentra 9.zbMATHGoogle Scholar
  11. 11.
    V. V. Zharinov, “The formal de Rham complex,” Teor. Mat. Fiz. 174 (2), 256–271 (2013) [Theor. Math. Phys. 174, 220–235 (2013)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. V. Zharinov, “Algebraic aspects of gauge theories,” Teor. Mat. Fiz. 180 (2), 217–233 (2014) [Theor. Math. Phys. 180, 942–957 (2014)].MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    V. V. Zharinov, “Conservation laws, differential identities, and constraints of partial differential equations,” Teor. Mat. Fiz. 185 (2), 227–251 (2015) [Theor. Math. Phys. 185, 1557–1581 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    V. V. Zharinov, “Bäcklund transformations,” Teor. Mat. Fiz. 189 (3), 323–334 (2016) [Theor. Math. Phys. 189, 1681–1692 (2016)].CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations