Advertisement

On Quantum Dynamics on C*-Algebras

  • I. V. Volovich
  • V. Zh. Sakbaev
Article
  • 13 Downloads

Abstract

We consider the problem of constructing quantum dynamics for symmetric Hamiltonian operators that have no self-adjoint extensions. For an earlier studied model, it was found that an elliptic self-adjoint regularization of a symmetric Hamiltonian operator allows one to construct quantum dynamics for vector states on certain C*-subalgebras of the algebra of bounded operators in a Hilbert space. In the present study, we prove that one can extend the dynamics to arbitrary states on these C*-subalgebras while preserving the continuity and convexity. We show that the obtained extension of the dynamics of the set of states on C*-subalgebras is the limit of a sequence of regularized dynamics under removal of the elliptic regularization. We also analyze the properties of the limit dynamics of the set of states on the C*-subalgebras.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. G. Amosov and V. Zh. Sakbaev, “Geometric properties of systems of vector states and expansion of states in Pettis integrals,” Algebra Anal. 27 (4), 1–14 (2015) [St. Petersburg Math. J. 27, 589–597 (2016)].MathSciNetGoogle Scholar
  3. 3.
    I. Ya. Aref’eva, “Formation time of quark–gluon plasma in heavy-ion collisions in the holographic shock wave model,” Teor. Mat. Fiz. 184 (3), 398–417 (2015) [Theor. Math. Phys. 184, 1239–1255 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    I. Ya. Aref’eva and M. A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics,” J. High Energy Phys. 2016 (4), 121 (2016).MathSciNetGoogle Scholar
  5. 5.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1: C *-and W *-Algebras, Symmetry Groups, Decomposition of States (Springer, New York, 1979).CrossRefzbMATHGoogle Scholar
  6. 6.
    N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory (Interscience, New York, 1958; URSS, Moscow, 2004).zbMATHGoogle Scholar
  7. 7.
    Yu. N. Drozhzhinov, “Multidimensional Tauberian theorems for generalized functions,” Usp. Mat. Nauk 71 (6), 99–154 (2016) [Russ. Math. Surv. 71, 1081–1134 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. O. Katanaev, “Killing vector fields and a homogeneous isotropic universe,” Usp. Fiz. Nauk 186 (7), 763–775 (2016) [Phys. Usp. 59 (7), 689–700 (2016)].CrossRefGoogle Scholar
  9. 9.
    V. V. Kozlov, “Invariant measures of smooth dynamical systems, generalized functions and summation methods,” Izv. Ross. Akad. Nauk, Ser. Mat. 80 (2), 63–80 (2016) [Izv. Math. 80, 342–358 (2016)].MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. V. Kozlov and D. V. Treschev, “Topology of the configuration space, singularities of the potential, and polynomial integrals of equations of dynamics,” Mat. Sb. 207 (10), 80–95 (2016) [Sb. Math. 207, 1435–1449 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Neidhardt and V. A. Zagrebnov, “On semibounded restrictions of self-adjoint operators,” Integral Eqns. Oper. Theory 31 (4), 489–512 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Yu. Neklyudov, “Inversion of Chernoff’s theorem,” Mat. Zametki 83 (4), 581–589 (2008) [Math. Notes 83, 530–538 (2008)].MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Ohya and I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano-and Bio-systems (Springer, New York, 2011).CrossRefzbMATHGoogle Scholar
  14. 14.
    Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, “Unbounded random operators and Feynman formulae,” Izv. Ross. Akad. Nauk, Ser. Mat. 80 (6), 141–172 (2016) [Izv. Math. 80, 1131–1158 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. N. Pechen and N. B. Il’in, “On the problem of maximizing the transition probability in an n-level quantum system using nonselective measurements,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 248–255 (2016) [Proc. Steklov Inst. Math. 294, 233–240 (2016)].MathSciNetzbMATHGoogle Scholar
  16. 16.
    V. Zh. Sakbaev, “Spectral aspects of regularization of the Cauchy problem for a degenerate equation,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 261, 258–267 (2008) [Proc. Steklov Inst. Math. 261, 253–261 (2008)].MathSciNetzbMATHGoogle Scholar
  17. 17.
    V. Zh. Sakbaev, “Averaging of quantum dynamical semigroups,” Teor. Mat. Fiz. 164 (3), 455–463 (2010) [Theor. Math. Phys. 164, 1215–1221 (2010)].CrossRefzbMATHGoogle Scholar
  18. 18.
    V. Zh. Sakbaev, “The set of quantum states and its averaged dynamic transformations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 48–58 (2011) [Russ. Math. 55 (10), 41–50 (2011)].MathSciNetzbMATHGoogle Scholar
  19. 19.
    V. Zh. Sakbaev, Cauchy Problem for Degenerating Linear Differential Equations and Averaging of Approximating Regularizations (Ross. Univ. Druzhby Narodov, Moscow, 2012), Sovrem. Mat., Fundam. Napr. 43 [J. Math. Sci. 213 (3), 287–459 (2016)].zbMATHGoogle Scholar
  20. 20.
    V. Zh. Sakbaev, “On dynamical properties of a one-parameter family of transformations arising in averaging of semigroups,” Sovrem. Mat., Fundam. Napr. 48, 93–110 (2013) [J. Math. Sci. 202 (6), 869–886 (2014)].Google Scholar
  21. 21.
    V. Zh. Sakbaev, “On the law of large numbers for compositions of independent random semigroups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 86–91 (2016) [Russ. Math. 60 (10), 72–76 (2016)].MathSciNetzbMATHGoogle Scholar
  22. 22.
    V. Zh. Sakbaev and I. V. Volovich, “Self-adjoint approximations of the degenerate Schrödinger operator,” p-Adic Numbers Ultrametric Anal. Appl. 9 (1), 39–52 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    I. E. Segal, Mathematical Problems of Relativistic Physics (Am. Math. Soc., Providence, RI, 1963; Mir, Moscow, 1968).Google Scholar
  24. 24.
    A. Trushechkin, “Semiclassical evolution of quantum wave packets on the torus beyond the Ehrenfest time in terms of Husimi distributions,” J. Math. Phys. 58 (6), 062102 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks,” Europhys. Lett. 113 (3), 30005 (2016).CrossRefGoogle Scholar
  26. 26.
    B. O. Volkov, “Stochastic Lévy differential operators and Yang–Mills equations,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 20 (2), 1750008 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light,” Phys. Lett. A 380 (1–2), 56–58 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    I. V. Volovich and S. V. Kozyrev, “Manipulation of states of a degenerate quantum system,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 256–267 (2016) [Proc. Steklov Inst. Math. 294, 241–251 (2016)].MathSciNetzbMATHGoogle Scholar
  29. 29.
    K. Yosida and E. Hewitt, “Finitely additive measures,” Trans. Am. Math. Soc. 72, 46–66 (1952).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and Technology (State University)DolgoprudnyiRussia

Personalised recommendations