Advertisement

Flow Structure behind a Shock Wave in a Channel with Periodically Arranged Obstacles

  • V. A. Shargatov
  • A. P. Chugainova
  • S. V. Gorkunov
  • S. I. Sumskoi
Article

Abstract

We study the propagation of a pressure wave in a rectangular channel with periodically arranged obstacles and show that a flow corresponding to a discontinuity structure may exist in such a channel. The discontinuity structure is a complex consisting of a leading shock wave and a zone in which pressure relaxation occurs. The pressure at the end of the relaxation zone can be much higher than the pressure immediately behind the gas-dynamic shock. We derive an approximate formula that relates the gas parameters behind the discontinuity structure to the average velocity of the structure. The calculations of the pressure, velocity, and density of the gas behind the structure that are based on the average velocity of the structure agree well with the results of gas-dynamic calculations. The approximate dependences obtained allow us to estimate the minimum pressure at which there exists a flow with a discontinuity structure. This estimate is confirmed by gas-dynamic calculations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abe, K. Takayama, and K. Itoh, “Experimental and numerical study of shock wave propagation over cylinders and spheres,” in Computational Methods and Experimental Measurements X (WIT Press, Southampton, 2001), WIT Trans. Modell. Simul. 30, pp. 209–218.Google Scholar
  2. 2.
    S. Berger, O. Sadot, and G. Ben-Dor, “Experimental investigation on the shock-wave load attenuation by geometrical means,” Shock Waves 20 (1), 29–40 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Berger, O. Sadot, and G. Ben-Dor, “Numerical investigation of shock-wave load attenuation by barriers,” in 28th Int. Symp. on Shock Waves, Ed. by K. Kontis (Springer, Heidelberg, 2012), Vol. 1, pp. 111–116.CrossRefGoogle Scholar
  4. 4.
    A. Britan, O. Igra, G. Ben-Dor, and H. Shapiro, “Shock wave attenuation by grids and orifice plates,” Shock Waves 16 (1), 1–15 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Britan, A. V. Karpov, E. I. Vasilev, O. Igra, G. Ben-Dor, and E. Shapiro, “Experimental and numerical study of shock wave interaction with perforated plates,” ASME J. Fluids Eng. 126 (3), 399–409 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Chaudhuri, A. Hadjadj, O. Sadot, and G. Ben-Dor, “Study of shock-wave mitigation through solid obstacles,” in 28th Int. Symp. on Shock Waves, Ed. by K. Kontis (Springer, Heidelberg, 2012), Vol. 2, pp. 493–498.CrossRefGoogle Scholar
  7. 7.
    A. P. Chugainova, “Special discontinuities in nonlinearly elastic media,” Zh. Vychisl. Mat. Mat. Fiz. 57 (6), 1023–1032 (2017) [Comput. Math. Math. Phys. 57, 1013–1021 (2017)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. P. Chugainova, A. T. Il’ichev, A. G. Kulikovskii, and V. A. Shargatov, “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for a unique solution,” IMA J. Appl. Math. 82 (3), 496–525 (2017).MathSciNetGoogle Scholar
  9. 9.
    A. P. Chugainova and V. A. Shargatov, “Stability of nonstationary solutions of the generalized KdV–Burgers equation,” Zh. Vychisl. Mat. Mat. Fiz. 55 (2), 253–266 (2015) [Comput. Math. Math. Phys. 55, 251–263 (2015)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. P. Chugainova and V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation,” Zh. Vychisl. Mat. Mat. Fiz. 56 (2), 259–274 (2016) [Comput. Math. Math. Phys. 56, 263–277 (2016)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    G. A. El, M. A. Hoefer, and M. Shearer, “Dispersive and diffusive–dispersive shock waves for nonconvex conservation laws,” SIAM Rev. 59 (1), 3–61 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. M. Frolov, “Effectiveness of attenuating shock waves in channels by various methods,” J. Appl. Mech. Tech. Phys. 34 (1), 31–36 (1993).CrossRefzbMATHGoogle Scholar
  13. 13.
    S. M. Frolov and B. E. Gelfand, “Shock wave attenuation in partially confined channels,” Shock Waves 2 (2), 97–101 (1992).CrossRefzbMATHGoogle Scholar
  14. 14.
    S. M. Frolov, B. E. Gelfand, S. P. Medvedev, and S. A. Tsyganov, “Quenching of shock waves by barriers and screens,” in Current Topics in Shock Waves: 17th Int. Symp. on Shock Waves and Shock Tubes, Ed. byY.W.Kim (Am. Inst. Phys., New York, 1989), AIP Conf. Proc. 208, pp. 314–320.Google Scholar
  15. 15.
    B. E. Gel’fand, S. M. Frolov, and S. P. Medvedev, “Measurement and computation of shock wave attenuation in a rough pipe,” Fiz. Goreniya Vzryva 26 (3), 91–95 (1990) [Combust. Explos. Shock Waves 26 (3), 335–338 (1990)].Google Scholar
  16. 16.
    N. Gongora-Orozco, H. Zare-Behtash, and K. Kontis, “Experimental studies on shock wave propagating through junction with grooves,” in 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition (Am. Inst. Aeronaut. Astronaut., Reston, VA, 2009), Paper AIAA 2009-327.Google Scholar
  17. 17.
    W. Heilig and O. Igra, “Shock waves in channels,” in Handbook of Shock Waves, Ed. by G. Ben-Dor, O. Igra, and T. Elperin (Academic, San Diego, 2001), Vol. 2, Ch. 10, pp. 319–396.Google Scholar
  18. 18.
    D. Igra and O. Igra, “Attenuating shock waves by barrier having different orientations: A numerical investigation,” in 29th Int. Symp. on Shock Waves, Ed. by R. Bonazza and D. Ranjan (Springer, Cham, 2015), Vol. 2, pp. 1273–1278.CrossRefGoogle Scholar
  19. 19.
    O. Igra, J. Falcovitz, L. Houas, and G. Jourdan, “Review of methods to attenuate shock/blast waves,” Prog. Aerosp. Sci. 58, 1–35 (2013).CrossRefGoogle Scholar
  20. 20.
    A. T. Il’ichev, “Stability of solitary waves in membrane tubes: A weakly nonlinear analysis,” Teor. Mat. Fiz. 193 (2), 214–224 (2017) [Theor. Math. Phys. 193, 1593–1601 (2017)].MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A. T. Il’ichev, A. P. Chugainova, and V. A. Shargatov, “Spectral stability of special discontinuities,” Dokl. Akad. Nauk 462 (5), 512–516 (2015) [Dokl. Math. 91 (3), 347–351 (2015)].MathSciNetzbMATHGoogle Scholar
  22. 22.
    V. P. Kolgan, “Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics,” J. Comput. Phys. 230 (7), 2384–2390 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. G. Kulikovskii, A. P. Chugainova, and V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity,” Zh. Vychisl. Mat. Mat. Fiz. 56 (7), 1363–1370 (2016) [Comput. Math. Math. Phys. 56, 1355–1362 (2016)].MathSciNetzbMATHGoogle Scholar
  24. 24.
    P. G. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves (Birkhäuser, Basel, 2002), Lect. Math., ETH Zürich.CrossRefzbMATHGoogle Scholar
  25. 25.
    Yu. N. Ryabinin and V. N. Rodionov, “Attenuation of shock waves propagating in channels,” in Physics of Explosions (Akad. Nauk SSSR, Moscow, 1955), No. 3, pp. 33–58 [in Russian].Google Scholar
  26. 26.
    O. Sadot, G. Ben-Dor, and A. Hadjadj, “Experimental and numerical investigations of shock waves attenuation over obstacles,” in Proc. 27th Int. Symp. on Shock Waves, St. Petersburg, 2009 (Int. Shock Wave Inst., 2011), p. 327.Google Scholar
  27. 27.
    A. Sasoh, K. Matsuoka, K. Nakashio, E. Timofeev, K. Takayama, P. Voinovich, T. Saito, S. Hirano, S. Ono, and Y. Makino, “Attenuation of weak shock waves along pseudo-perforated walls,” Shock Waves 8 (3), 149–159 (1998).CrossRefGoogle Scholar
  28. 28.
    S. Sha, Z. Chen, and X. Jiang, “Influences of obstacle geometries on shock wave attenuation,” Shock Waves 24 (6), 573–582 (2014).CrossRefGoogle Scholar
  29. 29.
    B. Skews, “Shock wave interaction with porous plates,” Exp. Fluids 39 (5), 875–884 (2005).CrossRefGoogle Scholar
  30. 30.
    A. P. Szumowski, “Attenuation of a shock wave along a perforated tube,” in Shock Tube Research: Proc. 8th Int. Shock Tube Symp., London, 1971, Ed. by J. L. Stollery, A. G. Gaydon, and P. R. Owen (Chapman & Hall, London, 1971), Paper 14.Google Scholar
  31. 31.
    C. Wang, J. Ding, S. Tan, and W. Han, “High order numerical simulation of detonation wave propagation through complex obstacles with the inverse Lax–Wendroff treatment,” Commun. Comput. Phys. 18 (5), 1264–1281 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J. H. T. Wu and P. P. Ostrowski, “Shock attenuation in a perforated duct,” in Shock Tube Research: Proc. 8th Int. Shock Tube Symp., London, 1971, Ed. by J. L. Stollery, A. G. Gaydon, and P. R. Owen (Chapman & Hall, London, 1971), Paper 15.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Shargatov
    • 1
  • A. P. Chugainova
    • 2
  • S. V. Gorkunov
    • 1
  • S. I. Sumskoi
    • 1
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations