Advertisement

Shock Waves in Anisotropic Cylinders

  • A. G. Kulikovskii
  • A. P. Chugainova
Article
  • 12 Downloads

Abstract

We study small-amplitude longitudinal and torsional shock waves in circular cylinders consisting of an anisotropic medium such that the velocities of the longitudinal and torsional waves are close to each other. Previously, simple waves were considered in the same situation and conditions were found for these waves to overturn and for the corresponding shock waves to form. Here we present the study of shock waves: the shock adiabat and the evolutionary conditions. The results obtained can also be related to shock waves in unbounded media with quadratic nonlinearity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Berdichevsky, Variational Principles of Continuum Mechanics (Nauka, Moscow, 1983); Revised Engl. transl.: Variational Principles of Continuum Mechanics. I: Fundamentals, II: Applications (Springer, Berlin, 2009).zbMATHGoogle Scholar
  2. 2.
    A. P. Chugainova, “Asymptotic behavior of nonlinear waves in elastic media with dispersion and dissipation,” Teor. Mat. Fiz. 147 (2), 240–256 (2006) [Theor. Math. Phys. 147, 646–659 (2006)].MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. P. Chugainova, “Self-similar asymptotics of wave problems and the structures of non-classical discontinuities in non-linearly elastic media with dispersion and dissipation,” Prikl. Mat. Mekh. 71 (5), 775–787 (2007) [J. Appl. Math. Mech. 71, 701–711 (2007)].MathSciNetGoogle Scholar
  4. 4.
    A. P. Chugainova, “Special discontinuities in nonlinearly elastic media,” Zh. Vychisl. Mat. Mat. Fiz. 57 (6), 1023–1032 (2017) [Comput. Math. Math. Phys. 57, 1013–1021 (2017)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    A. P. Chugainova, A. T. Il’ichev, A. G. Kulikovskii, and V. A. Shargatov, “Problem of arbitrary discontinuity disintegration for the generalized Hopf equation: Selection conditions for a unique solution,” IMA J. Appl. Math. 82 (3), 496–525 (2017).MathSciNetGoogle Scholar
  6. 6.
    A. P. Chugainova and V. A. Shargatov, “Stability of discontinuity structures described by a generalized KdV–Burgers equation,” Zh. Vychisl. Mat. Mat. Fiz. 56 (2), 259–274 (2016) [Comput. Math. Math. Phys. 56, 263–277 (2016)].MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. N. Druz’, N. A. Polyakov, and Yu. A. Ustinov, “Homogeneous solutions and Saint-Venant problems for a naturally twisted rod,” Prikl. Mat. Mekh. 60 (4), 660–668 (1996) [J. Appl. Math. Mech. 60, 657–664 (1996)].zbMATHGoogle Scholar
  8. 8.
    A. N. Druz’ and Yu. A. Ustinov, “Green’s tensor for an elastic cylinder and its applications in the development of the Saint-Venant theory,” Prikl. Mat. Mekh. 60 (1), 102–110 (1996) [J. Appl. Math. Mech. 60, 97–104 (1996)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. I. Erofeev, “Nonlinear flexural and torsional waves in rods and rod systems,” Vestn. Nauchn.-Tekh. Razvitiya, No. 4, 46–50 (2009).Google Scholar
  10. 10.
    V. I. Erofeev and N. V. Klyueva, “Propagation of nonlinear torsional waves in a beam made of a differentmodulus material,” Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 5, 147–153 (2003) [Mech. Solids 38 (5), 122–126 (2003)].Google Scholar
  11. 11.
    M. F. Glushko, “Investigation of deformations and stresses in twisted ropes with real wire-contact conditions taken into account,” Izv. Vyssh. Uchebn. Zaved., Gornyi Zh., No. 11, 103–118 (1961).Google Scholar
  12. 12.
    A. Hanyga, On the Solution to the Riemann Problem for Arbitrary Hyperbolic System of Conservation Laws (Państw. Wydawn. Nauk., Warszawa, 1976), Publ. Inst. Geophys., Pol. Acad. Sci. A-1.Google Scholar
  13. 13.
    A. T. Il’ichev and A. P. Chugainova, “Spectral stability theory of heteroclinic solutions to the Korteweg–de Vries–Burgers equation with an arbitrary potential,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 295, 163–173 (2016) [Proc. Steklov Inst. Math. 295, 148–157 (2016)].MathSciNetzbMATHGoogle Scholar
  14. 14.
    A. G. Kulikovskii, “Properties of shock adiabats in the neighborhood of Jouguet points,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 184–186 (1979) [Fluid Dyn. 14, 317–320 (1979)].Google Scholar
  15. 15.
    A. G. Kulikovskii and A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena,” Zh. Vychisl. Mat. Mat. Fiz. 44 (6), 1119–1126 (2004) [Comput. Math. Math. Phys. 44, 1062–1068 (2004)].MathSciNetzbMATHGoogle Scholar
  16. 16.
    A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory,” Usp. Mat. Nauk 63 (2), 85–152 (2008) [Russ. Math. Surv. 63, 283–350 (2008)].CrossRefGoogle Scholar
  17. 17.
    A. G. Kulikovskii and A. P. Chugainova, “On the steady-state structure of shock waves in elastic media and dielectrics,” Zh. Eksp. Teor. Fiz. 137 (5), 973–985 (2010) [J. Exp. Theor. Phys. 110 (5), 851–862 (2010)].Google Scholar
  18. 18.
    A. G. Kulikovskii and A. P. Chugainova, “Shock waves in elastoplastic media with the structure defined by the stress relaxation process,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 178–194 (2015) [Proc. Steklov Inst. Math. 289, 167–182 (2015)].MathSciNetzbMATHGoogle Scholar
  19. 19.
    A. G. Kulikovskii and A. P. Chugainova, “A self-similar wave problem in a Prandtl–Reuss elastoplastic medium,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 295, 195–205 (2016) [Proc. Steklov Inst. Math. 295, 179–189 (2016)].MathSciNetzbMATHGoogle Scholar
  20. 20.
    A. G. Kulikovskii and A. P. Chugainova, “Study of discontinuities in solutions of the Prandtl–Reuss elastoplasticity equations,” Zh. Vychisl. Mat. Mat. Fiz. 56 (4), 650–663 (2016) [Comput. Math. Math. Phys. 56, 637–649 (2016)].MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. G. Kulikovskii and A. P. Chugainova, “Long nonlinear waves in anisotropic cylinders,” Zh. Vychisl. Mat. Mat. Fiz. 57 (7), 1198–1204 (2017) [Comput. Math. Math. Phys. 57, 1194–1200 (2017)].MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. G. Kulikovskii, A. P. Chugainova, and V. A. Shargatov, “Uniqueness of self-similar solutions to the Riemann problem for the Hopf equation with complex nonlinearity,” Zh. Vychisl. Mat. Mat. Fiz. 56 (7), 1363–1370 (2016) [Comput. Math. Math. Phys. 56, 1355–1362 (2016)].MathSciNetzbMATHGoogle Scholar
  23. 23.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman & Hall/CRC, Boca Raton, FL, 2001); 2nd ed. (Fizmatlit, Moscow, 2012) [in Russian].zbMATHGoogle Scholar
  24. 24.
    A. G. Kulikovskii and E. I. Sveshnikova, “On shock wave propagation in stressed isotropic nonlinearly elastic media,” Prikl. Mat. Mekh. 44 (3), 523–534 (1980) [J. Appl. Math. Mech. 44, 367–374 (1980)].MathSciNetGoogle Scholar
  25. 25.
    A. G. Kulikovskii and E. I. Sveshnikova, “Investigation of the shock adiabat of quasitransverse shock waves in a prestressed elastic medium,” Prikl. Mat. Mekh. 46 (5), 831–840 (1982) [J. Appl. Math. Mech. 46, 667–673 (1982)].Google Scholar
  26. 26.
    A. G. Kulikovskii and E. I. Sveshnikova, “A selfsimilar problem on the action of a sudden load on the boundary of an elastic half-space,” Prikl. Mat. Mekh. 49 (2), 284–291 (1985) [J. Appl. Math. Mech. 49, 214–220 (1985)].MathSciNetGoogle Scholar
  27. 27.
    A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media (CRC, Boca Raton, FL, 1995; Mosk. Litsei, Moscow, 1998).zbMATHGoogle Scholar
  28. 28.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, Oxford, 1987).Google Scholar
  29. 29.
    P. D. Lax, “Hyperbolic systems of conservation laws. II,” Commun. Pure Appl. Math. 10, 537–566 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. A. Malashin, “Longitudinal, transverse, and torsion waves and oscillations in musical strings,” Dokl. Akad. Nauk 424 (2), 197–199 (2009) [Dokl. Phys. 54 (1), 43–46 (2009)].MathSciNetzbMATHGoogle Scholar
  31. 31.
    Yu. N. Rabotnov, Mechanics of a Deformable Solid (Nauka, Moscow, 1988) [in Russian].zbMATHGoogle Scholar
  32. 32.
    Kh. A. Rakhmatulin and K. A. Adylov, “Normal transverse impact against spiral wire cables,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., No. 6, 105–108 (1976) [Moscow Univ. Mech. Bull. 31 (5–6), 60–64 (1976)].zbMATHGoogle Scholar
  33. 33.
    G. N. Savin, “Equations of motion of a naturally twisted thread of variable length,” Dokl. Akad. Nauk Ukr. SSR, No. 6, 726–730 (1960).Google Scholar
  34. 34.
    L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1994; World Sci., River Edge, NJ, 1997), Vol. 1.zbMATHGoogle Scholar
  35. 35.
    E. I. Sveshnikova, “Riemann waves in an elastic medium with small cubic anisotropy,” Prikl. Mat. Mekh. 69 (1), 75–83 (2005) [J. Appl. Math. Mech. 69, 71–78 (2005)].MathSciNetzbMATHGoogle Scholar
  36. 36.
    E. I. Sveshnikova, “Shock waves in an elastic medium with cubic anisotropy,” Prikl. Mat. Mekh. 70 (4), 673–683 (2006) [J. Appl. Math. Mech. 70, 611–620 (2006)].MathSciNetzbMATHGoogle Scholar
  37. 37.
    Yu. A. Ustinov, Saint-Venant Problems for Pseudocylinders (Fizmatlit, Moscow, 2003) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations