On the Binary Additive Divisor Problem

  • Olga G. Balkanova
  • Dmitry A. Frolenkov


We show that the methods of Motohashi and Meurman yield the same upper bound on the error term in the binary additive divisor problem. To this end, we improve an estimate in the proof of Motohashi.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-M. Deshouillers and H. Iwaniec, “An additive divisor problem,” J. London Math. Soc., Ser. 2, 26, 1–14 (1982).MathSciNetzbMATHGoogle Scholar
  2. 2.
    T. Estermann, “Über die Darstellungen einer Zahl als Differenz von zwei Produkten,” J. Reine Angew. Math. 164, 173–182 (1931).MathSciNetzbMATHGoogle Scholar
  3. 3.
    D. R. Heath-Brown, “The fourth power moment of the Riemann zeta function,” J. London Math. Soc., Ser. 3, 38, 385–422 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. E. Ingham, “Some asymptotic formulae in the theory of numbers,” J. London Math. Soc. 2, 202–208 (1927).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    H. H. Kim (with appendix 1 by D. Ramakrishnan and appendix 2 by H. H. Kim and P. Sarnak), “Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2,” J. Am. Math. Soc. 16, 139–183 (2003).CrossRefGoogle Scholar
  6. 6.
    N. V. Kuznetsov, “Petersson’s conjecture for cusp forms of weight zero and Linnik’s conjecture. Sums of Kloosterman sums,” Mat. Sb. 111 (3), 334–383 (1980) [Math. USSR, Sb. 39 (3), 299–342 (1981)].MathSciNetzbMATHGoogle Scholar
  7. 7.
    N. V. Kuznetsov, “Convolution of the Fourier coefficients of the Eisenstein–Maass series,” Zap. Nauchn. Semin. LOMI 129, 43–84 (1983) [J. Sov. Math. 29 (2), 1131–1159 (1985)].MathSciNetzbMATHGoogle Scholar
  8. 8.
    T. Meurman, “On the binary additive divisor problem,” in Number Theory: Proc. Turku Symp. on Number Theory in Memory of Kustaa Inkeri, Turku, 1999, Ed. by M. Jutila et al. (W. de Gruyter, Berlin, 2001), pp. 223–246.Google Scholar
  9. 9.
    Y. Motohashi, “Spectral mean values of Maass waveform L-functions,” J. Number Theory 42 (3), 258–284 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Y. Motohashi, “The binary additive divisor problem,” Ann. Sci. Éc. Norm. Supér., Sér. 4, 27 (5), 529–572 (1994).MathSciNetzbMATHGoogle Scholar
  11. 11.
    NIST Handbook of Mathematical Functions, Ed. by F.W. J.Olver,D.W. Lozier, R.F. Boisvert, and C. W. Clarke (Cambridge Univ. Press, Cambridge, 2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TurkuTurkuFinland
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations