Spin geometry of Dirac and noncommutative geometry of Connes

  • A. G. Sergeev


The review is devoted to the interpretation of the Dirac spin geometry in terms of noncommutative geometry. In particular, we give an idea of the proof of the theorem stating that the classical Dirac geometry is a noncommutative spin geometry in the sense of Connes, as well as an idea of the proof of the converse theorem stating that any noncommutative spin geometry over the algebra of smooth functions on a smooth manifold is the Dirac spin geometry.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Connes, Noncommutative Geometry (Academic, San Diego, CA, 1994).zbMATHGoogle Scholar
  2. 2.
    J. M. Gracia-Bondía, J. C. Várilly, and H. Figueroa, Elements of Noncommutative Geometry (Birkhäuser, Boston, 2001).CrossRefzbMATHGoogle Scholar
  3. 3.
    M. Khalkhali, Basic Noncommutative Geometry (Eur. Math. Soc., Zürich, 2013).CrossRefzbMATHGoogle Scholar
  4. 4.
    G. Landi, An Introduction to Noncommutative Spaces and Their Geometries (Springer, Berlin, 1997).zbMATHGoogle Scholar
  5. 5.
    H. B. Lawson Jr. and M.-L. Michelsohn, Spin Geometry (Princeton Univ. Press, Princeton, NJ, 1989).zbMATHGoogle Scholar
  6. 6.
    A. G. Sergeev, “Quantum calculus and quasiconformal mappings,” Mat. Zametki 100 (1), 144–154 (2016) [Math. Notes 100, 123–131 (2016)].MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. G. Sergeev, “Quantization of the Sobolev space of half-differentiable functions,” Mat. Sb. 207 (10), 96–104 (2016) [Sb. Math. 207, 1450–1457 (2016)].MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. G. Sergeev, “Introduction to noncommutative geometry,” E-print (Steklov Math. Inst., Moscow, 2016), Scholar
  9. 9.
    A. G. Sergeev, “Noncommutative geometry and analysis,” in Differential Equations. Mathematical Physics (VINITI, Moscow, 2017), Itogi Nauki Tekhn., Sovrem. Mat. Prilozh., Temat. Obzory 137, pp. 61–81.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations