On G-rigid surfaces

  • Vik. S. KulikovEmail author
  • E. I. Shustin


Rigid algebraic varieties form an important class of complex varieties that exhibit interesting geometric phenomena. In this paper we propose a natural extension of rigidity to complex projective varieties with a finite group action (G-varieties) and focus on the first nontrivial case, namely, on G-rigid surfaces that can be represented as desingularizations of Galois coverings of the projective plane with Galois group G. We obtain local and global G-rigidity criteria for these G-surfaces and present several series of such surfaces that are rigid with respect to the action of the deck transformation group.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Ballico and A. Hefez, “On the Galois group associated to a generically étale morphism,” Commun. Algebra 14 (5), 899–909 (1986).CrossRefzbMATHGoogle Scholar
  2. 2.
    W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces (Springer, Berlin, 1984).CrossRefzbMATHGoogle Scholar
  3. 3.
    A. Beauville, “Finite simple groups of small essential dimension,” in Trends in Contemporary Mathematics (Springer, Cham, 2014), Springer INdAM Ser. 8, pp. 221–228.Google Scholar
  4. 4.
    H. Cartan, “Quotient d’un espace analytique par un groupe d’automorphismes,” in Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz (Princeton Univ. Press, Princeton, NJ, 1957), Princeton Math. Ser. 12, pp. 90–102.Google Scholar
  5. 5.
    R. Hartshorne, Deformation Theory (Springer, Berlin, 2010), Grad. Texts Math. 257.CrossRefzbMATHGoogle Scholar
  6. 6.
    V. A. Iskovskikh and A. V. Pukhlikov, “Birational automorphisms of multidimensional algebraic manifolds,” in Algebraic Geometry–1 (VINITI, Moscow, 2001), Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh., Temat. Obzory 19, pp. 5–139 [J. Math. Sci. 82 (4), 3528–3613 (1996)].Google Scholar
  7. 7.
    Vik. S. Kulikov, “Hurwitz curves,” Usp. Mat. Nauk 62 (6), 3–86 (2007) [Russ. Math. Surv. 62, 1043–1119 (2007)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Vik. S. Kulikov, “Dualizing coverings of the plane,” Izv. Ross. Akad. Nauk, Ser. Mat. 79 (5), 163–192 (2015) [Izv. Math. 79, 1013–1042 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Vik. S. Kulikov, “Plane rational quartics and K3 surfaces,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 105–140 (2016) [Proc. Steklov Inst. Math. 294, 95–128 (2016)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    Vik. S. Kulikov and V. M. Kharlamov, “Surfaces with DIF≠DEF real structures,” Izv. Ross. Akad. Nauk, Ser. Mat. 70 (4), 135–174 (2006) [Izv. Math. 70, 769–807 (2006)].MathSciNetCrossRefGoogle Scholar
  11. 11.
    Vik. S. Kulikov and V. M. Kharlamov, “Automorphisms of Galois coverings of generic m-canonical projections,” Izv. Ross. Akad. Nauk, Ser. Mat. 73 (1), 121–156 (2009) [Izv. Math. 73, 121–150 (2009)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vik. S. Kulikov and E. Shustin, “On rigid plane curves,” Eur. J. Math. 2 (1), 208–226 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Y. Miyaoka, “On the Chern numbers of surfaces of general type,” Invent. Math. 42, 225–237 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D. Mumford, “The topology of normal singularities of an algebraic surface and a criterion for simplicity,” Publ. Math., Inst. Hautes Étud. Sci. 9, 5–22 (1961).CrossRefzbMATHGoogle Scholar
  15. 15.
    S. Nakano, “On the inverse of monoidal transformation,” Publ. Res. Inst. Math. Sci., Kyoto Univ. 6 (3), 483–502 (1971).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    V. L. Popov, “Finite subgroups of diffeomorphism groups„” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 235–241 (2015) [Proc. Steklov Inst. Math. 289, 221–226 (2015)].MathSciNetzbMATHGoogle Scholar
  17. 17.
    V. L. Popov, “Number of components of the nullcone,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 95–101 (2015) [Proc. Steklov Inst. Math. 290, 84–90 (2015)].MathSciNetzbMATHGoogle Scholar
  18. 18.
    V. L. Popov, “Algebras of general type: Rational parametrization and normal forms,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 292, 209–223 (2016) [Proc. Steklov Inst. Math. 292, 202–215 (2016)].MathSciNetGoogle Scholar
  19. 19.
    Yu. G. Prokhorov, “On G-Fano threefolds,” Izv. Ross. Akad. Nauk, Ser. Mat. 79 (4), 159–174 (2015) [Izv. Math. 79, 795–808 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    V. V. Przyjalkowski and C. A. Shramov, “Double quadrics with large automorphism groups,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 167–190 (2016) [Proc. Steklov Inst. Math. 294, 154–175 (2016)].MathSciNetzbMATHGoogle Scholar
  21. 21.
    G. C. Shephard and J. A. Todd, “Finite unitary reflection groups,” Can. J. Math. 6, 274–304 (1954).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    K. Stein, “Analytische Zerlegungen komplexer Räume,” Math. Ann. 132, 63–93 (1956).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. M. Wahl, “Equisingular deformations of plane algebroid curves,” Trans. Am. Math. Soc. 193, 143–170 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    E. Yasinsky, “Subgroups of odd order in the real plane Cremona group,” J. Algebra 461, 87–120 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    S.-T. Yau, “Calabi’s conjecture and some new results in algebraic geometry,” Proc. Natl. Acad. Sci. USA 74, 1798–1799 (1977).CrossRefzbMATHGoogle Scholar
  26. 26.
    O. Zariski, “Studies in equisingularity. I: Equivalent singularities of plane algebroid curves,” Am. J. Math. 87, 507–536 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    O. Zariski, “Studies in equisingularity. II: Equisingularity in codimension 1 (and characteristic zero),” Am. J. Math. 87, 972–1006 (1965).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.School of Mathematical SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations