Realization of Morse–Smale diffeomorphisms on 3-manifolds

  • Ch. BonattiEmail author
  • V. Z. Grines
  • O. V. Pochinka


The paper presents a realization of an orientation-preserving Morse–Smale 3-diffeomorphism in each class of the topological conjugacy by means of an abstract scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bonatti and V. Grines, “Knots as topological invariants for gradient-like diffeomorphisms of the sphere S3,” J. Dyn. Control Syst. 6 (4), 579–602 (2000).CrossRefzbMATHGoogle Scholar
  2. 2.
    Ch. Bonatti, V. Grines, F. Laudenbach, and O. Pochinka, “Topological classification of Morse–Smale diffeomorphisms without heteroclinic curves on 3-manifolds,” arXiv: 1702.04960 [math.GT].Google Scholar
  3. 3.
    C. Bonatti, V. Grines, V. Medvedev, and E. Pécou, “Topological classification of gradient-like diffeomorphisms on 3-manifolds,” Topology 43 (2), 369–391 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    C. Bonatti, V. Z. Grines, and O. V. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on 3-manifolds,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad Nauk 250, 5–53 (2005) [Proc. Steklov Inst. Math. 250, 1–46 (2005)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    C. Bonatti, V. Grines, and O. Pochinka, “Classification of Morse–Smale diffeomorphisms with the chain of saddles on 3-manifolds,” in Foliations 2005: Proc. Int. Conf., Lodz, 2005 (World Scientific, Hackensack, NJ, 2006), pp. 121–147.Google Scholar
  6. 6.
    C. Bonatti and R. Langevin, Difféomorphismes de Smale des surfaces (Soc. Math. France, Paris, 1998), Astérisque 250.zbMATHGoogle Scholar
  7. 7.
    C. Bonatti and L. Paoluzzi, “3-manifolds which are orbit spaces of diffeomorphisms,” Topology 47 (2), 71–100 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. H. Fox and E. Artin, “Some wild cells and spheres in three-dimensional space,” Ann. Math., Ser. 2, 49 (4), 979–990 (1948).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. Z. Grines, “Topological classification of Morse–Smale diffeomorphisms with finite set of heteroclinic trajectories on surfaces,” Mat. Zametki 54 (3), 3–17 (1993) [Math. Notes 54, 881–889 (1993)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    V. Z. Grines, T. V. Medvedev, and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds (Springer, Cham, 2016).CrossRefzbMATHGoogle Scholar
  11. 11.
    V. Z. Grines and O. V. Pochinka, “Morse–Smale cascades on 3-manifolds,” Usp. Mat. Nauk 68 (1), 129–188 (2013) [Russ. Math. Surv. 68, 117–173 (2013)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, and O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad Nauk 271, 111–133 (2010) [Proc. Steklov Inst. Math. 271, 103–124 (2010)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    V. Z. Grines, E. V. Zhuzhoma, and O. V. Pochinka, “Morse–Smale systems and topological structure of supporting manifolds,” Sovrem. Mat., Fundam. Napravl. 61, 5–40 (2016).MathSciNetGoogle Scholar
  14. 14.
    C. Kosniowski, A First Course in Algebraic Topology (Cambridge Univ. Press, Cambridge, 1980).CrossRefzbMATHGoogle Scholar
  15. 15.
    A. G. Maier, “Structurally stable transformation of a circle into a circle,” Uch. Zap. Gor’k. Univ., No. 12, 215–229 (1939).Google Scholar
  16. 16.
    M. M. Peixoto, “On the classification of flows on 2-manifolds,” in Dynamical Systems: Proc. Symp. Univ. Bahia, Salvador, 1971 (Academic, New York, 1973), pp. 389–419.CrossRefGoogle Scholar
  17. 17.
    D. Pixton, “Wild unstable manifolds,” Topology 16 (2), 167–172 (1977).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institut de Mathématiques de BourgogneUMR 5584 du CNRSDijon CedexFrance
  2. 2.National Research University “Higher School of Economics,”MoscowRussia

Personalised recommendations