Proceedings of the Steklov Institute of Mathematics

, Volume 295, Issue 1, pp 302–332 | Cite as

Controlled motion of a rigid body with internal mechanisms in an ideal incompressible fluid

  • E. V. VetchaninEmail author
  • A. A. Kilin


We consider the controlled motion in an ideal incompressible fluid of a rigid body with moving internal masses and an internal rotor in the presence of circulation of the fluid velocity around the body. The controllability of motion (according to the Rashevskii–Chow theorem) is proved for various combinations of control elements. In the case of zero circulation, we construct explicit controls (gaits) that ensure rotation and rectilinear (on average) motion. In the case of nonzero circulation, we examine the problem of stabilizing the body (compensating the drift) at the end point of the trajectory. We show that the drift can be compensated for if the body is inside a circular domain whose size is defined by the geometry of the body and the value of circulation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Ageev, L. V. Kiselev, Yu. V. Matvienko, et al., Autonomous Underwater Robots: Systems and Technology, Ed. by M. D. Ageev (Nauka, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    A. A. Agrachev and Yu. L. Sachkov, Control Theory from the Geometric Viewpoint (Springer, Berlin, 2004).CrossRefzbMATHGoogle Scholar
  3. 3.
    R. McN. Alexander, “The history of fish mechanics,” in Fish Biomechanics, Ed. by P. W. Webb and D. Weihs (Praeger, New York, 1983), pp. 1–35.Google Scholar
  4. 4.
    G. Antonelli, Underwater Robots (Springer, Cham, 2014).CrossRefGoogle Scholar
  5. 5.
    H. C. Berg, Random Walks in Biology (Princeton Univ. Press, Princeton, NJ, 1993).Google Scholar
  6. 6.
    P. Bhatta and N. E. Leonard, “Stabilization and coordination of underwater gliders,” in Proc. 41st IEEE Conf. on Decision and Control (IEEE, Piscataway, NJ, 2002), Vol. 2, pp. 2081–2086.Google Scholar
  7. 7.
    R. W. Blake, Fish Locomotion (Cambridge Univ. Press, Cambridge, 1983).Google Scholar
  8. 8.
    N. N. Bolotnik, T. Yu. Figurina, and F. L. Chernous’ko, “Optimal control of the rectilinear motion of a two-body system in a resistive medium,” Prikl. Mat. Mekh. 76(1), 3–22 (2012) [J. Appl. Math. Mech. 76, 1–14 (2012)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    B. Bonnard, “Contrôlabilité des systèmes non linéaires,” C. R. Acad. Sci. Paris, Sér. 1, 292, 535–537 (1981).MathSciNetzbMATHGoogle Scholar
  10. 10.
    B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory (Springer, Paris, 2003), Math. Appl. 40.zbMATHGoogle Scholar
  11. 11.
    A. V. Borisov, A. Yu. Jalnine, S. P. Kuznetsov, I. R. Sataev, and Ju. V. Sedova, “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback,” Regul. Chaotic Dyn. 17(6), 512–532 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “New effects in dynamics of rattlebacks,” Dokl. Akad. Nauk 408(2), 192–195 (2006) [Dokl. Phys. 51(5), 272–275 (2006)].MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control Chaplygin’s sphere using rotors,” Nelinein. Din. 8(2), 289–307 (2012) [Regul. Chaotic Dyn. 17(3–4), 258–272 (2012)].CrossRefzbMATHGoogle Scholar
  14. 14.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control the Chaplygin ball using rotors. II,” Nelinein. Din. 9(1), 59–76 (2013) [Regul. Chaotic Dyn. 18(1–2), 144–158 (2013)].MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “The problem of drift and recurrence for the rolling Chaplygin ball,” Nelinein. Din. 9(4), 721–754 (2013) [Regul. Chaotic Dyn. 18(6), 832–859 (2013)].CrossRefzbMATHGoogle Scholar
  16. 16.
    A. V. Borisov, V. V. Kozlov, and I. S. Mamaev, “Asymptotic stability and associated problems of dynamics of falling rigid body,” Regul. Chaotic Dyn. 12(5), 531–565 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. V. Borisov and I. S. Mamaev, Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos (Inst. Komp’yut. Issled., Moscow, 2005) [in Russian].zbMATHGoogle Scholar
  18. 18.
    A. V. Borisov and I. S. Mamaev, “On the motion of a heavy rigid body in an ideal fluid with circulation,” Chaos 16(1), 013118 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. V. Borisov, I. S. Mamaev, and S. M. Ramodanov, “Motion of a circular cylinder and n point vortices in a perfect fluid,” Regul. Chaotic Dyn. 8(4), 449–462 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. V. Borisov, I. S. Mamaev, and S.M. Ramodanov, “Dynamic interaction of point vortices and a two-dimensional cylinder,” J. Math. Phys. 48(6), 065403 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    C. Canudas de Wit, H. Olsson, K. J. Åström, and P. Lischinsky, “A new model for control of systems with friction,” IEEE Trans. Autom. Control 40(3), 419–425 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    S. A. Chaplygin, On the Effect of a Plane-Parallel Air Flow on a Cylindrical Wing Moving in It (Moscow, 1926), Tr. Tsentr. Aerohydrodin. Inst. 19; reprint. in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 2, pp. 300–382 [in Russian].Google Scholar
  23. 23.
    S. A. Chaplygin, “On the motion of heavy bodies in an incompressible fluid,” in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 312–336 [in Russian].Google Scholar
  24. 24.
    F. L. Chernous’ko, “The optimal periodic motions of a two-mass system in a resistant medium,” Prikl. Mat. Mekh. 72(2), 202–215 (2008) [J. Appl. Math. Mech. 72, 116–125 (2008)].MathSciNetzbMATHGoogle Scholar
  25. 25.
    S. Childress, S. E. Spagnolie, and T. Tokieda, “A bug on a raft: Recoil locomotion in a viscous fluid,” J. Fluid Mech. 669, 527–556 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    W.-S. Chu et al., “Review of biomimetic underwater robots using smart actuators,” Int. J. Precis. Eng. Manuf. 13(7), 1281–1292 (2012).CrossRefGoogle Scholar
  27. 27.
    M. Chyba, N. E. Leonard, and E. D. Sontag, “Optimality for underwater vehicles,” in Proc. 40th IEEE Conf. on Decision and Control (IEEE, Piscataway, NJ, 2001), Vol. 5, pp. 4204–4209.CrossRefGoogle Scholar
  28. 28.
    J. Cochran, E. Kanso, S. D. Kelly, H. Xiong, and M. Krstic, “Source seeking for two nonholonomic models of fish locomotion,” IEEE Trans. Rob. 25(5), 1166–1176 (2009).CrossRefGoogle Scholar
  29. 29.
    J. E. Colgate and K. M. Lynch, “Mechanics and control of swimming: A review,” IEEE J. Oceanic Eng. 29(3), 660–673 (2004).CrossRefGoogle Scholar
  30. 30.
    P. E. Crouch, “Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models,” IEEE Trans. Autom. Control 29(4), 321–331 (1984).CrossRefzbMATHGoogle Scholar
  31. 31.
    K. D. Do, Z. P. Jiang, J. Pan, and H. Nijmeijer, “A global output-feedback controller for stabilization and tracking of underactuated ODIN: A spherical underwater vehicle,” Automatica 40(1), 117–124 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    K. M. Ehlers and J. Koiller, “Micro-swimming without flagella: Propulsion by internal structures,” Regul. Chaotic Dyn. 16(6), 623–652 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    L. Föppl, “Wirbelbewegung hinter einem Kreiszylinder,” Münch. Ber. 1913, 1–17 (1913).zbMATHGoogle Scholar
  34. 34.
    J. Gray, “Studies in animal locomotion. VI: The propulsive powers of the dolphin,” J. Exp. Biol. 13(2), 192–199 (1936).Google Scholar
  35. 35.
    T. H. Havelock, “The stability of motion of rectilinear vortices in ring formation,” Philos. Mag., Ser. 7, 11 (70), Suppl., 617–633 (1931).CrossRefzbMATHGoogle Scholar
  36. 36.
    P. Jagadeesh, K. Murali, and V. G. Idichandy, “Experimental investigation of hydrodynamic force coefficients over AUV hull form,” Ocean Eng. 36(1), 113–118 (2009).CrossRefGoogle Scholar
  37. 37.
    M. A. Jones and M. J. Shelley, “Falling cards,” J. Fluid Mech. 540, 393–425 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    V. Jurdjevic, Geometric Control Theory (Cambridge Univ. Press, Cambridge, 1997).zbMATHGoogle Scholar
  39. 39.
    E. Kanso, J. E. Marsden, C. W. Rowley, and J. B. Melli-Huber, “Locomotion of articulated bodies in a perfect fluid,” J. Nonlinear Sci. 15(4), 255–289 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Yu. L. Karavaev and A. A. Kilin, “The dynamics and control of a spherical robot with an internal omniwheel platform,” Nelinein. Din. 11(1), 187–204 (2015) [Regul. Chaotic Dyn. 20(2), 134–152 (2015)].CrossRefzbMATHGoogle Scholar
  41. 41.
    A. O. Kazakov, “Strange attractors and mixed dynamics in the problem of an unbalanced rubber ball rolling on a plane,” Regul. Chaotic Dyn. 18(5), 508–520 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    A. A. Kilin, E. N. Pivovarova, and T. B. Ivanova, “Spherical robot of combined type: Dynamics and control,” Regul. Chaotic Dyn. 20(6), 716–728 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    A. A. Kilin and E. V. Vetchanin, “The control of the motion through an ideal fluid of a rigid body by means of two moving masses,” Nelinein. Din. 11(4), 633–645 (2015).CrossRefzbMATHGoogle Scholar
  44. 44.
    L. V. Kiselev and A. V. Medvedev, “Comparative analysis and optimization of the dynamical properties of autonomous underwater robots of various projects and configurations,” Podvodn. Issled. Robototekh., No. 1, 24–35 (2012).Google Scholar
  45. 45.
    G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik (B.G. Teubner, Leipzig, 1877).zbMATHGoogle Scholar
  46. 46.
    J. Koiller, K. Ehlers, and R. Montgomery, “Problems and progress in microswimming,” J. Nonlinear Sci. 6(6), 507–541 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    V. V. Kozlov and D. A. Onishchenko, “Motion of a body with rigid shell and variable mass geometry in an unbounded perfect fluid,” in Problems of Mechanics: Collection of Papers Dedicated to the 90th Birthday of A.Yu. Ishlinskii (Fizmatlit, Moscow, 2003), pp. 465–476 [in Russian].Google Scholar
  48. 48.
    V. V. Kozlov and S. M. Ramodanov, “The motion of a variable body in an ideal fluid,” Prikl. Mat. Mekh. 65(4), 592–601 (2001) [J. Appl. Math. Mech. 65, 579–587 (2001)].MathSciNetzbMATHGoogle Scholar
  49. 49.
    V. V. Kozlov and S. M. Ramodanov, “On the motion of a body with a rigid shell and variable mass geometry in a perfect fluid,” Dokl. Akad. Nauk 382(4), 478–481 (2002) [Dokl. Phys. 47(2), 132–135 (2002)].Google Scholar
  50. 50.
    R. P. Kumar, A. Dasgupta, and C. S. Kumar, “Real-time optimal motion planning for autonomous underwater vehicles,” Ocean Eng. 32(11–12), 1431–1447 (2005).CrossRefGoogle Scholar
  51. 51.
    H. Lamb, Hydrodynamics, 6th ed. (Dover Publ., New York, 1945).zbMATHGoogle Scholar
  52. 52.
    N. E. Leonard, “Stability of a bottom-heavy underwater vehicle,” Automatica 33(3), 331–346 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    N. E. Leonard and J. E. Marsden, “Stability and drift of underwater vehicle dynamics: Mechanical systems with rigid motion symmetry,” Physica D 105(1–3), 130–162 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    A. M. Lyapunov, “On constant helical motions of a rigid body in a fluid,” Soobshch. Kharkov. Mat. Obshch., Ser. 2, 1(1), 7–60 (1888).Google Scholar
  55. 55.
    S. Michelin and S. G. Llewelly Smith, “An unsteady point vortex method for coupled fluid–solid problems,” Theor. Comput. Fluid Dyn. 23(2), 127–153 (2009).CrossRefzbMATHGoogle Scholar
  56. 56.
    R. M. Murray, J. W. Burdick, S. D. Kelly, and J. Radford, “Trajectory generation for mechanical systems with application to robotic locomotion,” in Robotics: The Algorithmic Perspective: Proc. 3rd Workshop on the Algorithmic Foundations of Robotics (A.K. Peters, Natick, MA, 1998), pp. 81–90.Google Scholar
  57. 57.
    L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and localization: A review,” IEEE J. Oceanic Eng. 39(1), 131–149 (2014).CrossRefGoogle Scholar
  58. 58.
    E. M. Purcell, “Life at low Reynolds number,” Am. J. Phys. 45(1), 3–11 (1977).MathSciNetCrossRefGoogle Scholar
  59. 59.
    S. M. Ramodanov and V. A. Tenenev, “The motion of a two-dimensional body, controlled by two moving internal masses, in an ideal fluid,” Prikl. Mat. Mekh. 79(4), 463–475 (2015) [J. Appl. Math. Mech. 79, 325–333 (2015)].MathSciNetGoogle Scholar
  60. 60.
    S. M. Ramodanov, V. A. Tenenev, and D. V. Treschev, “Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid,” Nelinein. Din. 8(4), 799–813 (2012) [Regul. Chaotic Dyn. 17(6), 547–558 (2012)].CrossRefzbMATHGoogle Scholar
  61. 61.
    P. K. Rashevskii, “Connectibility of any two points of a totally nonholonomic space by an admissible curve,” Uch. Zap. Mosk. Gos. Pedagog. Inst., Ser. Fiz.-Mat. 3(2), 83–94 (1938).Google Scholar
  62. 62.
    P. G. Saffman, “The self-propulsion of a deformable body in a perfect fluid,” J. Fluid Mech. 28(2), 385–389 (1967).CrossRefzbMATHGoogle Scholar
  63. 63.
    P. G. Saffman, Vortex Dynamics (Cambridge Univ. Press, Cambridge, 1992).zbMATHGoogle Scholar
  64. 64.
    A. V. Sakharov, “Rotation of the body with movable internal masses around the center of mass on a rough plane,” Regul. Chaotic Dyn. 20(4), 428–440 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE J. Oceanic Eng. 24(2), 237–252 (1999).CrossRefGoogle Scholar
  66. 66.
    B. N. Shashikanth, “Poisson brackets for the dynamically interacting system of a 2D rigid cylinder and N point vortices: The case of arbitrary smooth cylinder shapes,” Regul. Chaotic Dyn. 10(1), 1–14 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    B. N. Shashikanth, A. Sheshmani, S. D. Kelly, and J. E. Marsden, “Hamiltonian structure for a neutrally buoyant rigid body interacting with N vortex rings of arbitrary shape: The case of arbitrary smooth body shape,” Theor. Comput. Fluid Dyn. 22(1), 37–64 (2008).CrossRefzbMATHGoogle Scholar
  68. 68.
    J. A. Sparenberg, “Survey of the mathematical theory of fish locomotion,” J. Eng. Math. 44(4), 395–448 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    V. A. Steklov, “Motion of a heavy rigid body in a fluid,” Soobshch. Kharkov. Mat. Obshch., Ser. 2, 2(1–2), 209–235 (1889).Google Scholar
  70. 70.
    V. A. Steklov, “On some possible motions of a rigid body in a fluid,” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 7(2), 10–21 (1895).Google Scholar
  71. 71.
    Swimming and Flying in Nature, Ed. by T. Y.-T. Wu, C. J. Brokaw, and C. Brennen (Plenum, New York, 1975), Vol.1.Google Scholar
  72. 72.
    P. Tallapragada and S. D. Kelly, “Dynamics and self-propulsion of a spherical body shedding coaxial vortex rings in an ideal fluid,” Regul. Chaotic Dyn. 18(1–2), 21–32 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    P. Tallapragada and S. D. Kelly, “Self-propulsion of free solid bodies with internal rotors via localized singular vortex shedding in planar ideal fluids,” Eur. Phys. J. Spec. Top. 224(17), 3185–3197 (2015).CrossRefGoogle Scholar
  74. 74.
    V. A. Tenenev, E. V. Vetchanin, and L. F. Ilaletdinov, “Chaotic dynamics in the problem of the fall of a screw-shaped body in a fluid,” Nelinein. Din. 12(1), 99–120 (2016).CrossRefzbMATHGoogle Scholar
  75. 75.
    M. S. Triantafyllou, A. H. Techet, and F. S. Hover, “Review of experimental work in biomimetic foils,” IEEE J. Oceanic Eng. 29(3), 585–594 (2004).CrossRefGoogle Scholar
  76. 76.
    M. S. Triantafyllou, G. S. Triantafyllou, and D. K. P. Yue, “Hydrodynamics of fishlike swimming,” Annu. Rev. Fluid Mech. 32, 33–53 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    J. Vankerschaver, E. Kanso, and J. Marsden, “The geometry and dynamics of interacting rigid bodies and point vortices,” J. Geom. Mech. 1(2), 223–266 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    J. Vankerschaver, E. Kanso, and J. E. Marsden, “The dynamics of a rigid body in potential flow with circulation,” Regul. Chaotic Dyn. 15(4–5), 606–629 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    E. V. Vetchanin and A. A. Kilin, “Free and controlled motion of a body with a moving internal mass through a fluid in the presence of circulation around the body,” Dokl. Akad. Nauk 466(3), 293–297 (2016) [Dokl. Phys. 61(1), 32–36 (2016)].MathSciNetGoogle Scholar
  80. 80.
    E. V. Vetchanin and A. A. Kilin, “Control of body motion in an ideal fluid using the internal mass and the rotor in the presence of circulation around the body,” J. Dyn. Control Syst., doi: 10.1007/s10883-016-9345-4 (2016).Google Scholar
  81. 81.
    E. V. Vetchanin, I. S. Mamaev, and V. A. Tenenev, “The self-propulsion of a body with moving internal masses in a viscous fluid,” Nelinein. Din. 8(4), 815–836 (2012) [Regul. Chaotic Dyn. 18(1–2), 100–117 (2013)].CrossRefzbMATHGoogle Scholar
  82. 82.
    C. A. Woolsey and N. E. Leonard, “Stabilizing underwater vehicle motion using internal rotors,” Automatica 38(12), 2053–2062 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    T. Y. Wu, “Fish swimming and bird/insect flight,” Annu. Rev. Fluid Mech. 43, 25–58 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its control algorithm,” IEEE Trans. Syst. Man Cybern. B 34(4), 1798–1810 (2004).CrossRefGoogle Scholar
  85. 85.
    C. Zhou and K. H. Low, “Design and locomotion control of a biomimetic underwater vehicle with fin propulsion,” IEEE/ASME Trans. Mechatron. 17(1), 25–35 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kalashnikov Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations