Proceedings of the Steklov Institute of Mathematics

, Volume 295, Issue 1, pp 158–167 | Cite as

Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: Theory and experiments

Article

Abstract

We present the results of theoretical and experimental investigations of the motion of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed inside the robot. The control of the spherical robot is based on a dynamic model in the nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate coefficients. A number of experiments have been carried out that confirm the adequacy of the dynamic model proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-S. Ahn and Y.-J. Lee, “Novel spherical robot with hybrid pendulum driving mechanism,” Adv. Mech. Eng. 2014, 456727 (2014).Google Scholar
  2. 2.
    I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside,” Regul. Chaotic Dyn. 19(2), 198–213 (2014) [Nelinein. Din. 9(3), 547–566 (2013)].MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    A. V. Borisov, Yu. L. Karavaev, I. S. Mamaev, N. N. Erdakova, T. B. Ivanova, and V. V. Tarasov, “Experimental investigation of the motion of a body with an axisymmetric base sliding on a rough plane,” Regul. Chaotic Dyn. 20(5), 518–541 (2015) [Nelinein. Din. 11(3), 547–577 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “How to control the Chaplygin ball using rotors. II,” Regul. Chaotic Dyn. 18(1–2), 144–158 (2013) [Nelinein. Din. 9(1), 59–76 (2013)].MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Dynamics and control of an omniwheel vehicle,” Regul. Chaotic Dyn. 20(2), 153–172 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    A. V. Borisov and I. S. Mamaev, “Equations of motion of non-holonomic systems,” Usp. Mat. Nauk 70(6), 203–204 (2015) [Russ. Math. Surv. 70, 1167–1169 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. V. Borisov and I. S. Mamaev, “Notes on new friction models and nonholonomic mechanics,” Usp. Fiz. Nauk 185(12), 1339–1341 (2015) [Phys. Usp. 58, 1220–1222 (2015)].CrossRefGoogle Scholar
  8. 8.
    A. V. Borisov, I. S. Mamaev, and I. A. Bizyaev, “The Jacobi integral in nonholonomic mechanics,” Regul. Chaotic Dyn. 20(3), 383–400 (2015) [Nelinein. Din. 11(2), 377–396 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Chase and A. Pandya, “A review of active mechanical driving principles of spherical robots,” Robotics 1(1), 3–23 (2012).CrossRefGoogle Scholar
  10. 10.
    W.-H. Chen, C.-P. Chen, W.-S. Yu, C.-H. Lin, and P.-C. Lin, “Design and implementation of an omnidirectional spherical robot Omnicron,” in Proc. 2012 IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Kaohsiung (Taiwan), 2012 (IEEE, Piscataway, NJ, 2012), pp. 719–724.CrossRefGoogle Scholar
  11. 11.
    V. A. Crossley, “A literature review on the design of spherical rolling robots,” Preprint (Carnegie Mellon Univ., Pittsburgh, PA, 2006).Google Scholar
  12. 12.
    F. R. Hogan and J. R. Forbes, “Modeling of spherical robots rolling on generic surfaces,” Multibody Syst. Dyn. 35(1), 91–109 (2015).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    T. B. Ivanova and E. N. Pivovarova, “Comments on the paper by A.V. Borisov, A.A. Kilin, I.S. Mamaev ‘How to control the Chaplygin ball using rotors. II’,” Regul. Chaotic Dyn. 19(1), 140–143 (2014) [Nelinein. Din. 10(1), 127–132 (2014)].MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Yu. L. Karavaev and A. A. Kilin, “The dynamics and control of a spherical robot with an internal omniwheel platform,” Regul. Chaotic Dyn. 20(2), 134–152 (2015) [Nelinein. Din. 11(1), 187–204 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    J. Lee and W. Park, “Design and path planning for a spherical rolling robot,” in Proc. ASME 2013 International Mechanical Engineering Congress and Exposition (ASME, 2013, paper no. IMECE2013-64994).Google Scholar
  16. 16.
    M. Svinin, Y. Bai, and M. Yamamoto, “Dynamic model and motion planning for a pendulum-actuated spherical rolling robot,” in Robotics and Automation: Proc. 2015 IEEE Int. Conf. (ICRA) (IEEE, Piscataway, NJ, 2015), pp. 656–661.CrossRefGoogle Scholar
  17. 17.
    T. Ylikorpi, P. Forsman, A. Halme, and J. Saarinen, “Unified representation of decoupled dynamic models for pendulum-driven ball-shaped robots,” in Proc. 28th Eur. Conf. on Modelling and Simulation, Brescia, 2014 (ECMS, 2014), pp. 411–420.Google Scholar
  18. 18.
    T. Ylikorpi and J. Suomela, “Ball-shaped robots,” in Climbing and Walking Robots: Towards New Applications, Ed. by H. Zhang (I-Tech Educ. Publ., Vienna, 2007), pp. 235–256.Google Scholar
  19. 19.
    T. Yu, H. Sun, Q. Jia, Y. Zhang, and W. Zhao, “Stabilization and control of a spherical robot on an inclined plane,” Res. J. Appl. Sci. Eng. Technol. 5(6), 2289–2296 (2013).Google Scholar
  20. 20.
    Q. Zhan, “Motion planning of a spherical mobile robot,” in Motion and Operation Planning of Robotic Systems: Background and Practical Approaches (Springer, Cham, 2015), pp. 361–381.Google Scholar
  21. 21.
    M. Zheng, Q. Zhan, J. Liu, and Y. Cai, “Control of a spherical robot: Path following based on nonholonomic kinematics and dynamics,” Chin. J. Aeronaut. 24(3), 337–345 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Kalashnikov Izhevsk State Technical UniversityIzhevskRussia
  2. 2.Udmurt State UniversityIzhevskRussia

Personalised recommendations