Nonequilibrium statistical mechanics of a solid immersed in a continuum



In the introductory part of this survey, we briefly discuss the problems of nonequilibrium statistical physics that arise in the study of energy transport in solids as well as the results available at the moment. In the main part of the survey, we explain, compare, and generalize results obtained in our previous works. We study the dynamics and energy transport in Hamiltonian systems of particles where each particle is weakly perturbed by the interaction with its own stochastic Langevin thermostat. Such systems can be regarded as models of solids that interact weakly with a continuum.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (URSS, Moscow, 2002; Springer, Berlin, 2006), Encycl. Math. Sci.3.MATHGoogle Scholar
  2. 2.
    G. Basile, C. Bernardin, and S. Olla, “Thermal conductivity for a momentum conservative model,” Commun. Math. Phys. 287(1), 67–98 (2009).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    G. Basile, S. Olla, and H. Spohn, “Energy transport in stochastically perturbed lattice dynamics,” Arch. Ration. Mech. Anal. 195(1), 171–203 (2010).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    C. Bernardin and F. Huveneers, “Small perturbation of a disordered harmonic chain by a noise and an anharmonic potential,” Probab. Theory Relat. Fields 157(1–2), 301–331 (2013).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    C. Bernardin, F. Huveneers, J. L. Lebowitz, C. Liverani, and S. Olla, “Green–Kubo formula for weakly coupled systems with noise,” Commun. Math. Phys. 334(3), 1377–1412 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    C. Bernardin, V. Kannan, J. L. Lebowitz, and J. Lukkarinen, “Harmonic systems with bulk noises,” J. Stat. Phys. 146(4), 800–831 (2012).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    C. Bernardin and S. Olla, “Fourier’s law for a microscopic model of heat conduction,” J. Stat. Phys. 121(3–4), 271–289 (2005).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    C. Bernardin and S. Olla, “Transport properties of a chain of anharmonic oscillators with random flip of velocities,” J. Stat. Phys. 145(5), 1224–1255 (2011).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    V. I. Bogachev, N. V. Krylov, and M. Röckner, “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions,” Commun. Partial Diff. Eqns. 26, 2037–2080 (2001).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    F. Bonetto, J. L. Lebowitz, and J. Lukkarinen, “Fourier’s law for a harmonic crystal with self-consistent stochastic reservoirs,” J. Stat. Phys. 116(1–4), 783–813 (2004).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    F. Bonetto, J. L. Lebowitz, J. Lukkarinen, and S. Olla, “Heat conduction and entropy production in anharmonic crystals with self-consistent stochastic reservoirs,” J. Stat. Phys. 134(5–6), 1097–1119 (2009).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    F. Bonetto, J. L. Lebowitz, and L. Rey-Bellet, “Fourier’s law: A challenge to theorists,” in Mathematical Physics 2000: Proc. Int. Congr., London, 2000 (Imperial College Press, London, 2000), pp. 128–150.CrossRefGoogle Scholar
  13. 13.
    P. Carmona, “Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths,” Stoch. Processes Appl. 117(8), 1076–1092 (2007).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    N. Cuneo and J.-P. Eckmann, “Non-equilibrium steady states for chains of four rotors,” Commun. Math. Phys. 345(1), 185–221 (2016).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    N. Cuneo, J.-P. Eckmann, and C. Poquet, “Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors,” Nonlinearity 28(7), 2397–2421 (2015).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    D. Dolgopyat and C. Liverani, “Energy transfer in a fast–slow Hamiltonian system,” Commun. Math. Phys. 308(1), 201–225 (2011).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. V. Dymov, “Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom,” Izv. Ross. Akad. Nauk, Ser. Mat. 76(6), 45–80 (2012) [Izv. Math. 76, 1116–1149 (2012)].MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. Dymov, “Statistical mechanics of nonequilibrium systems of rotators with alternated spins,” arXiv: 1403.1219 [math-ph].Google Scholar
  19. 19.
    A. Dymov, “Nonequilibrium statistical mechanics of Hamiltonian rotators with alternated spins,” J. Stat. Phys. 158(4), 968–1006 (2015).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. Dymov, “Nonequilibrium statistical mechanics of weakly stochastically perturbed system of oscillators,” Ann. Henri Poincaré 17(7), 1825–1882 (2016).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    J.-P. Eckmann and M. Hairer, “Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators,” Commun. Math. Phys. 212(1), 105–164 (2000).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures,” Commun. Math. Phys. 201(3), 657–697 (1999).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    M. I. Freidlin and A. D. Wentzell, “Averaging principle for stochastic perturbations of multifrequency systems,” Stoch. Dyn. 3(3), 393–408 (2003).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    M. I. Freidlin and A. D. Wentzell, “Long-time behavior of weakly coupled oscillators,” J. Stat. Phys. 123(6), 1311–1337 (2006).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, 3rd ed. (Springer, Berlin, 2012).CrossRefMATHGoogle Scholar
  26. 26.
    M. Hairer and J. C. Mattingly, “Slow energy dissipation in anharmonic oscillator chains,” Commun. Pure Appl. Math. 62(8), 999–1032 (2009).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed. (Springer, New York, 1991).MATHGoogle Scholar
  28. 28.
    R. Z. Khasminskii, “Averaging principle for Ito’s stochastic differential equations,” Kibernetika 4, 260–279 (1968).Google Scholar
  29. 29.
    R. Khasminskii, Stochastic Stability of Differential Equations, 2nd ed. (Springer, Berlin, 2012).CrossRefMATHGoogle Scholar
  30. 30.
    N. V. Krylov, Controlled Diffusion Processes (Nauka, Moscow, 1977; Springer, New York, 1980).MATHGoogle Scholar
  31. 31.
    S. B. Kuksin, “Damped-driven KdV and effective equations for long-time behaviour of its solutions,” Geom. Funct. Anal. 20(6), 1431–1463 (2010).MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    S. B. Kuksin, “Weakly nonlinear stochastic CGL equations,” Ann. Inst. Henri Poincaré, Probab. Stat. 49(4), 1033–1056 (2013).MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    S. Kuksin and A. Maiocchi, “Resonant averaging for weakly nonlinear stochastic Schrödinger equations,” arXiv: 1309.5022 [math-ph].Google Scholar
  34. 34.
    S. B. Kuksin and A. L. Piatnitski, “Khasminskii–Whitham averaging for randomly perturbed KdV equation,” J. Math. Pures Appl. 89(4), 400–428 (2008).MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence (Cambridge Univ. Press, Cambridge, 2012).CrossRefMATHGoogle Scholar
  36. 36.
    S. Lepri, R. Livi, and A. Politi, “Thermal conduction in classical low-dimensional lattices,” Phys. Rep. 377(1), 1–80 (2003).MathSciNetCrossRefGoogle Scholar
  37. 37.
    C. Liverani and S. Olla, “Toward the Fourier law for a weakly interacting anharmonic crystal,” J. Am. Math. Soc. 25(2), 555–583 (2012).MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    J. C. Mattingly, A. M. Stuart, and D. J. Higham, “Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise,” Stoch. Processes Appl. 101(2), 185–232 (2002).MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    B. Øksendal, Stochastic Differential Equations: An Introduction with Applications (Springer, Berlin, 2003).CrossRefMATHGoogle Scholar
  40. 40.
    E. Pardoux and A. Yu. Veretennikov, “On the Poisson equation and diffusion approximation. I,” Ann. Probab. 29(3), 1061–1085 (2001).MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    R. Peierls, “On the kinetic theory of thermal conduction in crystals,” in Selected Scientific Papers of Sir Rudolf Peierls. With Commentary (World Sci., Singapore, 1997), pp. 15–48.CrossRefGoogle Scholar
  42. 42.
    L. Rey-Bellet and L. E. Thomas, “Exponential convergence to non-equilibrium stationary states in classical statistical mechanics,” Commun. Math. Phys. 225(2), 305–329 (2002).MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Z. Rieder, J. L. Lebowitz, and E. Lieb, “Properties of a harmonic crystal in a stationary nonequilibrium state,” J. Math. Phys. 8, 1073–1078 (1967).CrossRefGoogle Scholar
  44. 44.
    D. Ruelle, “A mechanical model for Fourier’s law of heat conduction,” Commun. Math. Phys. 311(3), 755–768 (2012).MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    S. M. Saulin, “On dissipative phenomena in infinite-dimensional Hamiltonian systems,” Teor. Mat. Fiz. 191 (2017) (in press).Google Scholar
  46. 46.
    A. Shirikyan, “Local times for solutions of the complex Ginzburg–Landau equation and the inviscid limit,” J. Math. Anal. Appl. 384(1), 130–137 (2011).MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Berlin, 1991).CrossRefMATHGoogle Scholar
  48. 48.
    D. Treschev, “Oscillator and thermostat,” Discrete Contin. Dyn. Syst. 28(4), 1693–1712 (2010).MathSciNetCrossRefMATHGoogle Scholar
  49. 49.
    A. Yu. Veretennikov, “Bounds for the mixing rate in the theory of stochastic equations,” Teor. Veroyatn. Primen. 32(2), 299–308 (1987) [Theory Probab. Appl. 32(2), 273–281 (1988)].MATHGoogle Scholar
  50. 50.
    A. Yu. Veretennikov, “On polynomial mixing bounds for stochastic differential equations,” Stoch. Processes Appl. 70(1), 115–127 (1997).MathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    T. Yamada and S. Watanabe, “On the uniqueness of solutions of stochastic differential equations,” J. Math. Kyoto Univ. 11, 155–167 (1971).MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.National Research University “Higher School of Economics,”MoscowRussia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations