Advertisement

Arnold diffusion in a neighborhood of strong resonances

  • M. N. Davletshin
  • D. V. Treschev
Article

Abstract

The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnol’d, “Instability of dynamical systems with several degrees of freedom,” Dokl. Akad. Nauk SSSR 156(1), 9–12 (1964) [Sov. Math., Dokl. 5, 581–585 (1964)].MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics (Springer, Berlin, 2006), Encycl. Math. Sci.3.zbMATHGoogle Scholar
  3. 3.
    S. Aubry and G. Abramovici, “Chaotic trajectories in the standard map: The concept of anti-integrability,” Physica D 43(2–3), 199–219 (1990).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Berti, L. Biasco, and P. Bolle, “Drift in phase space: A new variational mechanism with optimal diffusion time,” J. Math. Pures Appl., Sér. 9, 82(6), 613–664 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    M. Berti and P. Bolle, “A functional analysis approach to Arnold diffusion,” Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19(4), 395–450 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    U. Bessi, “An approach to Arnold’s diffusion through the calculus of variations,” Nonlinear Anal., Theory Methods Appl. 26(6), 1115–1135 (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    S. V. Bolotin and D. V. Treschev, “Remarks on the definition of hyperbolic tori of Hamiltonian systems,” Regul. Chaotic Dyn. 5(4), 401–412 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    S. V. Bolotin and D. V. Treschev, “The anti-integrable limit,” Usp. Mat. Nauk 70(6), 3–62 (2015) [Russ. Math. Surv. 70, 975–1030 (2015)].MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Bounemoura and E. Pennamen, “Instability for a priori unstable Hamiltonian systems: A dynamical approach,” Discrete Contin. Dyn. Syst. 32(3), 753–793 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    J. W. S. Cassels, An Introduction to Diophantine Approximation (Univ. Press, Cambridge, 1957), Cambridge Tracts Math. Math. Phys.45.zbMATHGoogle Scholar
  11. 11.
    C.-Q. Cheng and J. Xue, “Arnold diffusion in nearly integrable Hamiltonian systems of arbitrary degrees of freedom,” arXiv: 1503.04153v3 [math.DS].Google Scholar
  12. 12.
    C.-Q. Cheng and J. Yan, “Existence of diffusion orbits in a priori unstable Hamiltonian systems,” J. Diff. Geom. 67(3), 457–517 (2004).MathSciNetzbMATHGoogle Scholar
  13. 13.
    C.-Q. Cheng and J. Yan, “Arnold diffusion in Hamiltonian systems: A priori unstable case,” J. Diff. Geom. 82(2), 229–277 (2009).MathSciNetzbMATHGoogle Scholar
  14. 14.
    L. Chierchia and G. Gallavotti, “Drift and diffusion in phase space,” Ann. Inst. Henri Poincaré, Phys. Théor. 60(1), 1–144 (1994).MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. Delshams and G. Huguet, “Geography of resonances and Arnold diffusion in a priori unstable Hamiltonian systems,” Nonlinearity 22(8), 1997–2077 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    A. Delshams and G. Huguet, “A geometric mechanism of diffusion: Rigorous verification in a priori unstable Hamiltonian systems,” J. Diff. Eqns. 250(5), 2601–2623 (2011).MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    A. Delshams, R. de la Llave, and T. M. Seara, A Geometric Mechanism for Diffusion in Hamiltonian Systems Overcoming the Large Gap Problem: Heuristics and Rigorous Verification on a Model (Am. Math. Soc., Providence, RI, 2006), Mem. Am. Math. Soc. 179 (844).zbMATHGoogle Scholar
  18. 18.
    A. Delshams, R. de la Llave, and T. M. Seara, “Geometric properties of the scattering map of a normally hyperbolic invariant manifold,” Adv. Math. 217(3), 1096–1153 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    E. Fontich and P. Martín, “Arnold diffusion in perturbations of analytic integrable Hamiltonian systems,” Discrete Contin. Dyn. Syst. 7(1), 61–84 (2001).MathSciNetzbMATHGoogle Scholar
  20. 20.
    G. Gallavotti, G. Gentile, and V. Mastropietro, “Hamilton–Jacobi equation, heteroclinic chains and Arnol’d diffusion in three time scale systems,” Nonlinearity 13(2), 323–340 (2000).MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    M. Gidea and C. Robinson, “Obstruction argument for transition chains of tori interspersed with gaps,” Discrete Contin. Dyn. Syst., Ser. S, 2(2), 393–416 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    S. M. Graff, “On the conservation of hyperbolic tori for Hamiltonian systems,” J. Diff. Eqns. 15(1), 1–69 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    M. Guardia, V. Kaloshin, and J. Zhang, “A second order expansion of the separatrix map for trigonometric perturbations of a priori unstable systems,” Commun. Math. Phys. 348(1), 321–361 (2016).MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    V. Kaloshin and M. Levi, “Geometry of Arnold diffusion,” SIAM Rev. 50(4), 702–720 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    V. Kaloshin, J. Zhang, and K. Zhang, “Normally hyperbolic invariant laminations and diffusive behaviour for the generalized Arnold example away from resonances,” arXiv: 1511.04835 [math.DS].Google Scholar
  26. 26.
    V. Kaloshin and K. Zhang, “A strong form of Arnold diffusion for two and a half degrees of freedom,” arXiv: 1212.1150v2 [math.DS].Google Scholar
  27. 27.
    V. Kaloshin and K. Zhang, “A strong form of Arnold diffusion for three and a half degrees of freedom,” Preprint (Univ. Maryland, College Park, MD, 2014), http://www2.math.umd.edu/~vkaloshi/papers/announce-three-and-half.pdfGoogle Scholar
  28. 28.
    V. Kaloshin and K. Zhang, “Dynamics of the dominant Hamiltonian, with applications to Arnold diffusion,” arXiv: 1410.1844v2 [math.DS].Google Scholar
  29. 29.
    V. Kaloshin and K. Zhang, “Arnold diffusion for smooth convex systems of two and a half degrees of freedom,” Nonlinearity 28(8), 2699–2720 (2015).MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    N. N. Nekhoroshev, “An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems,” Usp. Mat. Nauk 32(6), 5–66 (1977) [Russ. Math. Surv. 32(6), 1–65 (1977)].MathSciNetzbMATHGoogle Scholar
  31. 31.
    G. N. Piftankin and D. V. Treschev, “Separatrix maps in Hamiltonian systems,” Usp. Mat. Nauk 62(2), 3–108 (2007) [Russ. Math. Surv. 62, 219–322 (2007)].MathSciNetCrossRefGoogle Scholar
  32. 32.
    D. Treschev, “Multidimensional symplectic separatrix maps,” J. Nonlinear Sci. 12(1), 27–58 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    D. Treschev, “Trajectories in a neighbourhood of asymptotic surfaces of a priori unstable Hamiltonian systems,” Nonlinearity 15(6), 2033–2052 (2002).MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    D. Treschev, “Evolution of slow variables in a priori unstable Hamiltonian systems,” Nonlinearity 17(5), 1803–1841 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems,” Nonlinearity 25(9), 2717–2757 (2012).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    D. Treschev and O. Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems (Springer, Berlin, 2010).zbMATHCrossRefGoogle Scholar
  37. 37.
    E. Zehnder, “Generalized implicit function theorems with applications to some small divisor problems. I, II,” Commun. Pure Appl. Math. 28(1), 91–140 (1975); 29(1), 49–111 (1976).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations