Advertisement

The Hess—Appelrot system and its nonholonomic analogs

  • I. A. Bizyaev
  • A. V. Borisov
  • I. S. Mamaev
Article

Abstract

This paper is concerned with the nonholonomic Suslov problem and its generalization proposed by Chaplygin. The issue of the existence of an invariant measure with singular density (having singularities at some points of the phase space) is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Appelroth, “Concerning § 1 of S. Kowalevski’s memoir ‘Sur le problème de la rotation d’un corps solide autour d’un point fixe’ (Acta Mathematica. 12. 2), ” Mat. Sb. 16 (3), 483–507 (1892).Google Scholar
  2. 2.
    A. V. Belyaev, “On the general solution of the problem of the motion of a heavy rigid body in the Hess case, ” Mat. Sb. 206 (5), 5–34 (2015) [Sb. Math. 206, 621–649 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    I. A. Bizyaev, “Nonintegrability and obstructions to the Hamiltonianization of a nonholonomic Chaplygin top, ” Dokl. Akad. Nauk 458 (4), 398–401 (2014) [Dokl. Math. 90 (2), 631–634 (2014)].MathSciNetMATHGoogle Scholar
  4. 4.
    I. A. Bizyaev, A. V. Borisov, and A. O. Kazakov, “Dynamics of the Suslov problem in a gravitational field: Reversal and strange attractors, ” Regul. Chaotic Dyn. 20 (5), 605–626 (2015).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “The dynamics of nonholonomic systems consisting of a spherical shell with a moving rigid body inside, ” Regul. Chaotic Dyn. 19 (2), 198–213 (2014).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    I. A. Bizyaev, A. V. Borisov, and I. S. Mamaev, “Dynamics of the Chaplygin sleigh on a cylinder, ” Regul. Chaotic Dyn. 21 (1), 136–146 (2016).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Hamiltonization of non-holonomic systems in the neighborhood of invariant manifolds, ” Regul. Chaotic Dyn. 16 (5), 443–464 (2011).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    A. V. Bolsinov, A. V. Borisov, and I. S. Mamaev, “Rolling of a ball without spinning on a plane: The absence of an invariant measure in a system with a complete set of integrals, ” Regul. Chaotic Dyn. 17 (6), 571–579 (2012).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    A. V. Borisov, A. Yu. Jalnine, S. P. Kuznetsov, I. R. Sataev, and Ju. V. Sedova, “Dynamical phenomena occurring due to phase volume compression in nonholonomic model of the rattleback, ” Regul. Chaotic Dyn. 17 (6), 512–532 (2012).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. V. Borisov, A. O. Kazakov, and I. R. Sataev, “The reversal and chaotic attractor in the nonholonomic model of Chaplygin’s top, ” Regul. Chaotic Dyn. 19 (6), 718–733 (2014).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, “Hamiltonicity and integrability of the Suslov problem, ” Regul. Chaotic Dyn. 16 (1–2), 104–116 (2011).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. V. Borisov and I. S. Mamaev, “The Hess case in rigid-body dynamics, ” Prikl. Mat. Mekh. 67 (2), 256–265 (2003) [J. Appl. Math. Mech. 67, 227–235 (2003)].MathSciNetMATHGoogle Scholar
  13. 13.
    A. V. Borisov and I. S. Mamaev, Dynamicsof a Rigid Body: Hamiltonian Methods, Integrability, and Chaos (Inst. Komp’yut. Issled., Moscow, 2005) [in Russian].MATHGoogle Scholar
  14. 14.
    A. V. Borisov and I. S. Mamaev, “The dynamics of a Chaplygin sleigh, ” Prikl. Mat. Mekh. 73 (2), 219–225 (2009) [J. Appl. Math. Mech. 73, 156–161 (2009)].MathSciNetGoogle Scholar
  15. 15.
    A. V. Borisov and I. S. Mamaev, “Symmetries and reduction in nonholonomic mechanics, ” Regul. Chaotic Dyn. 20 (5), 553–604 (2015).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    H. Broer and C. Simó, “Hill’s equation with quasi-periodic forcing: resonance tongues, instability pockets and global phenomena, ” Bol. Soc. Bras. Mat. 29 (2), 253–293 (1998).CrossRefMATHGoogle Scholar
  17. 17.
    S. A. Chaplygin, “Some cases of motion of a rigid body in a fluid. First article, ” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 6 (2), 20–42 (1894); reprint. in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 136–193 [in Russian]; “Second article,” Mat. Sb. 20 (1), 115–170 (1897); 20 (2), 173–246 (1898); reprint. in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 194–311 [in Russian].Google Scholar
  18. 18.
    S. A. Chaplygin, “Concerning Hess’s loxodromic pendulum, ” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 7 (1), 33–34 (1894); reprint. in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 133–135 [in Russian].Google Scholar
  19. 19.
    V. Dragović and B. Gajić, “Systems of Hess–Appel’rot type, ” Commun. Math. Phys. 265 (2), 397–435 (2006).CrossRefMATHGoogle Scholar
  20. 20.
    V. Dragović and B. Gajić, “Matrix Lax polynomials, geometry of Prym varieties and systems of Hess–Appel’rot type, ” Lett. Math. Phys. 76 (2–3), 163–186 (2006).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    H. R. Dullin and J. Worthington, “The vanishing twist in the restricted three body problem, ” Physica D 276, 12–20 (2014).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Yu. N. Fedorov, A. J. Maciejewski, and M. Przybylska, “The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions, ” Nonlinearity 22 (9), 2231–2259 (2009).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    O. E. Fernandez, A. M. Bloch, and D. V. Zenkov, “The geometry and integrability of the Suslov problem, ” J. Math. Phys. 55 (11), 112704 (2014).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    B. Grammaticos, B. Dorizzi, and A. Ramani, “Hamiltonians with high-order integrals and the ‘weak-Painlevé’ concept, ” J. Math. Phys. 25 (12), 3470–3473 (1984).MathSciNetCrossRefGoogle Scholar
  25. 25.
    W. Hess, “Ueber die Euler’schen Bewegungsgleichungen und über eine neue particuläre Lösung des Problems der Bewegung eines starren Körpers um einen festen Punkt, ” Math. Ann. 37 (2), 153–181 (1890).MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    E. I. Kharlamova-Zabelina, “Rapid rotation of a rigid body around a fixed point in the presence of a nonholonomic constraint, ” Vestn. Mosk. Univ., Ser. Mat. Mekh. Astron. Fiz. Khim., No. 6, 25–34 (1957).Google Scholar
  27. 27.
    A. Knauf and I. A. Taimanov, “On the integrability of the n-centre problem, ” Math. Ann. 331 (3), 631–649 (2005).MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    A. N. Kolmogorov, “On dynamical systems with an integral invariant on the torus, ” Dokl. Akad. Nauk SSSR 93 (5), 763–766 (1953).MathSciNetMATHGoogle Scholar
  29. 29.
    G. V. Kolosov, “On a case of motion of a heavy rigid body supported at a sharp point on a smooth plane, ” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 9 (2), 11–12 (1898).Google Scholar
  30. 30.
    V. V. Kozlov, “Splitting of separatrices in the perturbed Euler–Poinsot problem, ” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 6, 99–104 (1976).MathSciNetMATHGoogle Scholar
  31. 31.
    V. V. Kozlov, “On the theory of integration of the equations of nonholonomic mechanics, ” Usp. Mekh. 8 (3), 85–107 (1985).MathSciNetGoogle Scholar
  32. 32.
    V. V. Kozlov, Methodsof Qualitative Analysis in the Dynamics of a Rigid Body (Regulyarnaya i Khaoticheskaya Dinamika, Izhevsk, 2000) [in Russian].Google Scholar
  33. 33.
    V. Kozlov, “The phenomenon of reversal in the Euler–Poincaré–Suslov nonholonomic systems, ” J. Dyn. Control Syst., doi: 10.1007/s10883-015-9305-4 (2015).Google Scholar
  34. 34.
    V. V. Kozlov, “Rational integrals of quasi-homogeneous dynamical systems, ” Prikl. Mat. Mekh. 79 (3), 307–316 (2015) [J. Appl. Math. Mech. 79, 209–216 (2015)].MathSciNetGoogle Scholar
  35. 35.
    V. V. Kozlov, “Invariant measures of smooth dynamical systems, generalized functions and summation methods, ” Izv. Ross. Akad. Nauk, Ser. Mat. 80 (2), 63–80 (2016) [Izv. Math. 80, 342–358 (2016)].MathSciNetCrossRefGoogle Scholar
  36. 36.
    V. V. Kozlov and D. A. Onishchenko, “Nonintegrability of Kirchhoff’s equations, ” Dokl. Akad. Nauk SSSR 266 (6), 1298–1300 (1982) [Sov. Math., Dokl. 26, 495–498 (1982)].MathSciNetMATHGoogle Scholar
  37. 37.
    R. Liouville, “Sur la rotation des solides, ” C. R. Acad. Sci. 120 (17), 903–906 (1895).MATHGoogle Scholar
  38. 38.
    R. Liouville, “Sur la rotation des solides et le principe de Maxwell, ” C. R. Acad. Sci. 122 (19), 1050–1051 (1896).MATHGoogle Scholar
  39. 39.
    P. Lubowiecki and H. Żołądek, “The Hess–Appelrot system. I: Invariant torus and its normal hyperbolicity, ” J. Geom. Mech. 4 (4), 443–467 (2012).MathSciNetMATHGoogle Scholar
  40. 40.
    P. Lubowiecki and H. Żołądek, “The Hess–Appelrot system. II: Perturbation and limit cycles, ” J. Diff. Eqns. 252 (2), 1701–1722 (2012).MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    A. J. Maciejewski and M. Przybylska, “Non-integrability of the Suslov problem, ” Regul. Chaotic Dyn. 7 (1), 73–80 (2002).MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    B. K. Mlodzieiowski and P. A. Nekrasov, “Conditions for the existence of asymptotic periodic motions in the Hess problem, ” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 6 (1), 43–52 (1893).Google Scholar
  43. 43.
    P. A. Nekrasov, “On the problem of motion of a heavy rigid body about a fixed point, ” Mat. Sb. 16 (3), 508–517 (1892).Google Scholar
  44. 44.
    P. A. Nekrasov, “Analytic investigation of a certain case of motion of a heavy rigid body about a fixed point, ” Mat. Sb. 18 (2), 161–274 (1896).Google Scholar
  45. 45.
    G. G. Okuneva, “Integrable variants of non-holonomic rigid body problems, ” Z. Angew. Math. Mech. 78 (12), 833–840 (1998).MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    C. Simó, “Invariant curves of analytic perturbed nontwist area preserving maps, ” Regul. Chaotic Dyn. 3 (3), 180–195 (1998).MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    C. Simó and T. J. Stuchi, “Central stable/unstable manifolds and the destruction of KAM tori in the planar Hill problem, ” Physica D 140 (1–2), 1–32 (2000).MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    G. K. Suslov, TheoreticalMechanics (Gostekhizdat, Moscow, 1946) [in Russian].Google Scholar
  49. 49.
    Ya. V. Tatarinov, “Separating variables and new topological phenomena in holonomic and nonholonomic systems, ” in Tr. Semin. Vectorn. Tenzorn. Anal. Pril. Geom. Mekh. Fiz. (Mosk. Gos. Univ., Moscow, 1988), Vol. 23, pp. 160–174 [in Russian].Google Scholar
  50. 50.
    V. V. Vagner, “Geometric interpretation of the motion of nonholonomic dynamical systems, ” in Tr. Semin. Vectorn. Tenzorn. Anal. Pril. Geom. Mekh. Fiz. (OGIZ, Moscow, 1941), Vol. 5, pp. 301–327 [in Russian].Google Scholar
  51. 51.
    N. E. Zhukovsky, “Hess’s loxodromic pendulum, ” Tr. Otd. Fiz. Nauk Obshch. Lyubitelei Estestvoznaniya 5 (2), 37–45 (1893); reprint. in Collected Works (Gostekhizdat, Moscow, 1948), Vol. 1, pp. 257–274 [in Russian].Google Scholar
  52. 52.
    S. L. Ziglin, “Splitting of separatrices, branching of solutions and nonexistence of an integral in the dynamics of a solid body, ” Tr. Mosk. Mat. Obshch. 41, 287–303 (1980) [Trans. Moscow Math. Soc. 1982 (1), 283–298 (1982)].MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations