Manipulation of states of a degenerate quantum system



We consider the dynamics of an open three-level quantum degenerate system. One of the levels in this system is degenerate. The system interacts with three reservoirs (quantum fields) and a classical external field. We show that nondecaying so-called dark states are generated in this system. Since the interactions of the degenerate level with two different reservoirs are different (correspond to different spaces of dark states), we can describe excitation and manipulations for this kind of states (in particular, observation in spectroscopical experiments). Possible applications of this model in quantum optics, quantum computations, and quantum photosynthesis are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Accardi and S. Kozyrev, “Lectures on quantum interacting particle systems, ” in Quantum Interacting Particle Systems (World Scientific, Singapore, 2002), QP-PQ: Quantum Probab. White Noise Anal. 14, pp. 1–195.CrossRefGoogle Scholar
  2. 2.
    L. Accardi, S. V. Kozyrev, and A. N. Pechen, “Coherent quantum control of Λ-atoms through the stochastic limit, ” in Quantum Information and Computing, Ed. by L. Accardi, M. Ohya, and N. Watanabe (World Scientific, Hackensack, NJ, 2006), QP-PQ: Quantum Probab. White Noise Anal. 19, pp. 1–17; arXiv: quant-ph/0403100.CrossRefGoogle Scholar
  3. 3.
    L. Accardi, Y. G. Lu, and I. Volovich, QuantumTheory and Its Stochastic Limit (Springer, Berlin, 2002).CrossRefMATHGoogle Scholar
  4. 4.
    I. Ya. Aref’eva, I. V. Volovich, and S. V. Kozyrev, “Stochastic limit method and interference in quantum manyparticle systems, ” Teor. Mat. Fiz. 183 (3), 388–408 (2015) [Theor. Math. Phys. 183, 782–799 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    H. Dong, D.-Z. Xu, J.-F. Huang, and C.-P. Sun, “Coherent excitation transfer via the dark-state channel in a bionic system, ” Light: Sci. Appl. 1, e2, doi: 10.1038/lsa.2012.2 (2012).CrossRefGoogle Scholar
  6. 6.
    G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Manˇcal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, ” Nature 446, 782–786 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Ferretti, R. Hendrikx, E. Romero, J. Southall, R. J. Cogdell, V. I. Novoderezhkin, G. D. Scholes, and R. van Grondelle, “Dark states in the light-harvesting complex 2 revealed by two-dimensional electronic spectroscopy, ” Sci. Rep. 6, 20834 (2016).CrossRefGoogle Scholar
  8. 8.
    M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency, ” Phys. Rev. Lett. 84 (22), 5094–5097 (2000); arXiv: quant-ph/0001094.CrossRefGoogle Scholar
  9. 9.
    A. S. Holevo, QuantumSystems, Channels, Information: A Mathematical Introduction (de Gruyter, Berlin, 2012).CrossRefMATHGoogle Scholar
  10. 10.
    A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory, ” Usp. Mat. Nauk 70 (2), 141–180 (2015) [Russ. Math. Surv. 70, 331–367 (2015)].MathSciNetMATHGoogle Scholar
  11. 11.
    M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, “Environment-assisted quantum walks in photosynthetic energy transfer, ” J. Chem. Phys. 129 (17), 174106 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Ohya and I. Volovich, MathematicalFoundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems (Springer, New York, 2011).MATHGoogle Scholar
  13. 13.
    A. N. Pechen and N. B. Il’in, “Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 227–234 (2015) [Proc. Steklov Inst. Math. 289, 213–220 (2015)].MathSciNetMATHGoogle Scholar
  14. 14.
    A. Pechen and A. Trushechkin, “Measurement-assisted Landau–Zener transitions, ” Phys. Rev. A 91 (5), 052316 (2015).CrossRefGoogle Scholar
  15. 15.
    G. D. Scholes, G. R. Fleming, A. Olaya-Castro, and R. van Grondelle, “Lessons from nature about solar light harvesting, ” Nature Chem. 3, 763–774 (2011).CrossRefGoogle Scholar
  16. 16.
    M. O. Scully and M. S. Zubairy, QuantumOptics (Cambridge Univ. Press, Cambridge, 1997).Google Scholar
  17. 17.
    M. E. Shirokov, “On quantum zero-error capacity, ” Usp. Mat. Nauk 70 (1), 187–188 (2015) [Russ. Math. Surv. 70, 176–178 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks, ” Europhys. Lett. 113 (3), 30005 (2016).CrossRefGoogle Scholar
  19. 19.
    G. Vattay and S. A. Kauffman, “Evolutionary design in biological quantum computing,” arXiv: 1311.4688 [condmat. dis-nn].Google Scholar
  20. 20.
    I. V. Volovich, “Models of quantum computers and decoherence problem,” arXiv: quant-ph/9902055.Google Scholar
  21. 21.
    I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light, ” Phys. Lett. A 380 (1–2), 56–58 (2016).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations