On the problem of maximizing the transition probability in an n-level quantum system using nonselective measurements

  • Alexander N. PechenEmail author
  • Nikolay B. Il’in


We consider the problem of maximizing the probability of transition from a given initial state to a given final state for an n-level quantum system using nonselective quantum measurements. We find an estimate from below for the maximum of the transition probability for any fixed number of measurements and find the measured observables on which this estimate is attained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Blok, C. Bonato, M. L. Markham, D. J. Twitchen, V. V. Dobrovitski, and R. Hanson, “Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback, ” Nat. Phys. 10, 189–193 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Campisi, P. Talkner, and P. Hänggi, “Influence of measurements on the statistics of work performed on a quantum system, ” Phys. Rev. E 83 (4), 041114 (2011).CrossRefGoogle Scholar
  3. 3.
    J. M. Dominy, G. A. Paz-Silva, A. T. Rezakhani, and D. A. Lidar, “Analysis of the quantum Zeno effect for quantum control and computation, ” J. Phys. A: Math. Theor. 46 (7), 075306 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Fu, G. Shi, A. Proutiere, and M. R. James, “Feedback policies for measurement-based quantum state manipulation, ” Phys. Rev. A 90 (6), 062328 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Hentschel and B. C. Sanders, “Machine learning for precise quantum measurement, ” Phys. Rev. Lett. 104 (6), 063603 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Kakuyanagi, T. Baba, Y. Matsuzaki, H. Nakano, S. Saito, and K. Semba, “Observation of quantum Zeno effect in a superconducting flux qubit, ” New J. Phys. 17 (6), 063035 (2015).CrossRefGoogle Scholar
  7. 7.
    F. Lucas and K. Hornberger, “Incoherent control of the retinal isomerization in rhodopsin, ” Phys. Rev. Lett. 113 (5), 058301 (2014).CrossRefGoogle Scholar
  8. 8.
    G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A. Lidar, “Zeno effect for quantum computation and control, ” Phys. Rev. Lett. 108 (8), 080501 (2012).CrossRefzbMATHGoogle Scholar
  9. 9.
    A. N. Pechen and N. B. Il’in, “Coherent control of a qubit is trap-free, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 285, 244–252 (2014) [Proc. Steklov Inst. Math. 285, 233–240 (2014)].MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. N. Pechen and N. B. Il’in, “Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 227–234 (2015) [Proc. Steklov Inst. Math. 289, 213–220 (2015)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. N. Pechen and N. B. Il’in, “On critical points of the objective functional for maximization of qubit observables, ” Usp. Mat. Nauk 70 (4), 211–212 (2015) [Russ. Math. Surv. 70, 782–784 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Pechen, N. Il’in, F. Shuang, and H. Rabitz, “Quantum control by von Neumann measurements, ” Phys. Rev. A 74 (5), 052102 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Pechen and A. Trushechkin, “Measurement-assisted Landau–Zener transitions, ” Phys. Rev. A 91 (5), 052316 (2015).CrossRefGoogle Scholar
  14. 14.
    M. K. Pedersen, J. J. W. H. Sørensen, M. C. Tichy, and J. F. Sherson, “Many-body state engineering using measurements and fixed unitary dynamics, ” New J. Phys. 16 (11), 113038 (2014).CrossRefGoogle Scholar
  15. 15.
    F. Shuang, A. Pechen, T.-S. Ho, and H. Rabitz, “Observation-assisted optimal control of quantum dynamics, ” J. Chem. Phys. 126 (13), 134303 (2007).CrossRefGoogle Scholar
  16. 16.
    F. Shuang, M. Zhou, A. Pechen, R. Wu, O. M. Shir, and H. Rabitz, “Control of quantum dynamics by optimized measurements, ” Phys. Rev. A 78 (6), 063422 (2008).CrossRefGoogle Scholar
  17. 17.
    A. S. Trushechkin and I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks, ” Europhys. Lett. 113 (3), 30005 (2016).CrossRefGoogle Scholar
  18. 18.
    H. W. Wiseman, “Quantum control: Squinting at quantum systems, ” Nature 470, 178–179 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations