Fluid dynamics and thermodynamics as a unified field theory

  • V. P. PavlovEmail author
  • V. M. Sergeev


We study the problem of consistency of equations of continuum dynamics (using the Euler equations and the continuity equation as examples) and thermodynamic equations of state (for the specific free energy, entropy, and volume). We propose a variant of the Hamiltonian formulation of a model that combines the fluid dynamics of a potential flow of a compressible fluid or gas and local equilibrium thermodynamics into a unified field theory. Thermodynamic equations of state appear in this model as second-class constraint equations. As a consistency condition, there arises another second-class constraint requiring that the product of density and temperature should be independent of time. The model provides an in-principle possibility of finding the time dependence of the specific entropy of the arising dynamical system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Arnold, “The Hamiltonian nature of the Euler equations in the dynamics of a rigid body and of an ideal fluid, ” Usp. Mat. Nauk 24 (3), 225–226 (1969).MathSciNetGoogle Scholar
  2. 2.
    V. V. Kozlov, GeneralVortex Theory, 2nd ed. (Inst. Komp’yut. Issled., Moscow, 2013) [in Russian].Google Scholar
  3. 3.
    O. I. Bogoyavlenskij and A. P. Reynolds, “Criteria for existence of a Hamiltonian structure, ” Regul. Chaotic Dyn. 15 (4–5), 431–439 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    V. V. Kozlov, “The dynamics of systems with servoconstraints. I, II, ” Regul. Chaotic Dyn. 20 (3), 205–224 (2015) [Nelinein. Din. 11 (2), 353–376 (2015)]; Regul. Chaotic Dyn. 20 (4), 401–427 (2015) [Nelinein. Din. 11 (3), 579–611 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. P. Pavlov and V. M. Sergeev, “Dynamical principle, ” Teor. Mat. Fiz. 153 (1), 18–28 (2007) [Theor. Math. Phys. 153, 1364–1372 (2007)].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. Frønsdal, “Heat and gravitation: The action principle, ” Entropy 16 (3), 1515–1546 (2014).CrossRefGoogle Scholar
  7. 7.
    A. L. Fetter and J. D. Walecka, TheoreticalMechanics of Particles and Continua (McGraw-Hill, New York, 1980).zbMATHGoogle Scholar
  8. 8.
    V. P. Pavlov and A. O. Starinetz, “Phase space geometry of constrained systems, ” Teor. Mat. Fiz. 105 (3), 429–437 (1995) [Theor. Math. Phys. 105, 1539–1545 (1995)].MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    V. I. Arnold, MathematicalMethods of Classical Mechanics (Nauka, Moscow, 1974; Springer, New York, 1978).Google Scholar
  10. 10.
    V. V. Kozlov, “The vortex theory of adiabatic equilibrium processes, ” Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 2, 35–40 (2000) [Moscow Univ. Mech. Bull. 55 (2), 11–16 (2000)].MathSciNetzbMATHGoogle Scholar
  11. 11.
    L. D. Landau and E. M. Lifshitz, FluidDynamics (Nauka, Moscow, 1986), Theoretical Physics 6; Engl. transl.: Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Pergamon Press, Oxford, 1986).Google Scholar
  12. 12.
    V. P. Pavlov, “Reduction to the surface of second-class constraints, ” Teor. Mat. Fiz. 132 (3), 399–407 (2002) [Theor. Math. Phys. 132, 1233–1241 (2002)].CrossRefGoogle Scholar
  13. 13.
    P. K. Rashevskii, GeometricTheory of Partial Differential Equations (Gostekhizdat, Moscow; Leningrad, 1947) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.Center for Global Issues, Institute for International StudiesMGIMO UniversityMoscowRussia

Personalised recommendations