Advertisement

Elliptic function of level 4

  • E. Yu. Bunkova
Article
  • 24 Downloads

Abstract

The article is devoted to the theory of elliptic functions of level n. An elliptic function of level n determines a Hirzebruch genus called an elliptic genus of level n. Elliptic functions of level n are also of interest because they are solutions of the Hirzebruch functional equations. The elliptic function of level 2 is the Jacobi elliptic sine function, which determines the famous Ochanine–Witten genus. It is the exponential of the universal formal group of the form F(u, v) = (u 2v 2)/(uB(v) − vB(u)), B(0) = 1. The elliptic function of level 3 is the exponential of the universal formal group of the form F(u, v) = (u 2 A(v) − v 2 A(u))/(uA(v)2vA(u)2), A(0) = 1, A″(0) = 0. In the present study we show that the elliptic function of level 4 is the exponential of the universal formal group of the form F(u, v) = (u 2 A(v) − v 2 A(u))/(uB(v) − vB(u)), where A(0) = B(0) = 1 and for B′(0) = A″(0) = 0, A′(0) = A 1, and B″(0) = 2B 2 the following relation holds: (2B(u) + 3A 1 u)2 = 4A(u)3 − (3A 1 2 − 8B 2)u 2 A(u)2. To prove this result, we express the elliptic function of level 4 in terms of the Weierstrass elliptic functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Bukhshtaber, “Functional equations associated with addition theorems for elliptic functions and two-valued algebraic groups, ” Usp. Mat. Nauk 45 (3), 185–186 (1990) [Russ. Math. Surv. 45 (3), 213–215 (1990)].MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. M. Buchstaber and E. Yu. Bunkova, “Krichever formal groups, ” Funkts. Anal. Prilozh. 45 (2), 23–44 (2011) [Funct. Anal. Appl. 45, 99–116 (2011)].MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. M. Buchstaber and E. Yu. Bunkova, “The universal formal group that defines the elliptic function of level 3, ” Chebyshev. Sb. 16 (2), 66–78 (2015).Google Scholar
  4. 4.
    V. M. Buchstaber and E. Yu. Bunkova, “Manifolds of solutions for Hirzebruch functional equations, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 136–148 (2015) [Proc. Steklov Inst. Math. 290, 125–137 (2015)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    V. M. Buchstaber and E. Yu. Netay, “CP(2)-multiplicative Hirzebruch genera and elliptic cohomology, ” Usp. Mat. Nauk 69 (4), 181–182 (2014) [Russ. Math. Surv. 69, 757–759 (2014)].CrossRefzbMATHGoogle Scholar
  6. 6.
    V. M. Buchstaber and I. V. Netay, “Hirzebruch functional equation and elliptic functions of level d, ” Funkts. Anal. Prilozh. 49 (4), 1–17 (2015) [Funct. Anal. Appl. 49, 239–252 (2015)].MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. M. Buchstaber and T. E. Panov, ToricTopology (Am. Math. Soc., Providence, RI, 2015), Math. Surv. Monogr. 204.Google Scholar
  8. 8.
    V. M. Buchstaber and A. V. Ustinov, “Coefficient rings of formal groups, ” Mat. Sb. 206 (11), 19–60 (2015) [Sb. Math. 206, 1524–1563 (2015)].MathSciNetCrossRefGoogle Scholar
  9. 9.
    E. Yu. Bunkova, V. M. Buchstaber, and A. V. Ustinov, “Coefficient rings of Tate formal groups determining Krichever genera, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 292, 43–68 (2016) [Proc. Steklov Inst. Math. 292, 37–62 (2016)].zbMATHGoogle Scholar
  10. 10.
    M. Hazewinkel, FormalGroups and Applications (Academic, New York, 1978).Google Scholar
  11. 11.
    F. Hirzebruch, “Elliptic genera of level N for complex manifolds, ” Preprint 88-24 (Max-Planck-Inst. Math., Bonn, 1988).Google Scholar
  12. 12.
    F. Hirzebruch, T. Berger, and R. Jung, Manifoldsand Modular Forms (Vieweg, Braunschweig, 1992), Aspects Math. E20.CrossRefGoogle Scholar
  13. 13.
    I. M. Krichever, “Generalized elliptic genera and Baker–Akhiezer functions, ” Mat. Zametki 47 (2), 34–45 (1990) [Math. Notes 47, 132–142 (1990)].MathSciNetzbMATHGoogle Scholar
  14. 14.
    S. Lang, EllipticFunctions (Springer, New York, 1987).Google Scholar
  15. 15.
    S. Ochanine, “Sur les genres multiplicatifs définis par des intégrales elliptiques, ” Topology 26 (2), 143–151 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Part II: The Transcendental Functions, Repr. of the 4th ed. 1927 (Cambridge Univ. Press, Cambridge, 1996).CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations