Advertisement

New results on sums and products in ℝ

  • S. V. Konyagin
  • I. D. Shkredov
Article

Abstract

We improve previous sum–product estimates in ℝ; namely, we prove the inequality max{|A + A|, |AA|} ≫ |A|4/3+c , where c is any number less than 5/9813. New lower bounds for sums of sets with small product set are found. We also obtain results on the additive and multiplicative energies; in particular, we improve a result of Balog and Wooley.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Balog and T. D. Wooley, “A low-energy decomposition theorem,” arXiv: 1510.03309v1 [math.NT].Google Scholar
  2. 2.
    P. Erd˝os and E. Szemerédi, “On sums and products of integers, ” in Studies in Pure Mathematics: To the Memory of Paul Turán (Birkhäuser, Basel, 1983), pp. 213–218.CrossRefGoogle Scholar
  3. 3.
    N. H. Katz and P. Koester, “On additive doubling and energy, ” SIAM J. Discrete Math. 24, 1684–1693 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. V. Konyagin and I. D. Shkredov, “On sum sets of sets having small product set, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 290, 304–316 (2015) [Proc. Steklov Inst. Math. 290, 288–299 (2015)].MathSciNetzbMATHGoogle Scholar
  5. 5.
    O. E. Raz, O. Roche-Newton, and M. Sharir, “Sets with few distinct distances do not have heavy lines, ” Discrete Math. 338 (8), 1484–1492 (2015); arXiv: 1410.1654v1 [math.CO].MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    T. Schoen and I. D. Shkredov, “Higher moments of convolutions, ” J. Number Theory 133 (5), 1693–1737 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    I. D. Shkredov, “Some new inequalities in additive combinatorics, ” Moscow J. Comb. Number Theory 3, 189–239 (2013).MathSciNetzbMATHGoogle Scholar
  8. 8.
    I. D. Shkredov, “On sums of Szemerédi–Trotter sets, ” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 318–327 (2015) [Proc. Steklov Inst. Math. 289, 300–309 (2015)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    J. Solymosi, “Bounding multiplicative energy by the sumset, ” Adv. Math. 222 (2), 402–408 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    E. Szemerédi and W. T. Trotter Jr., “Extremal problems in discrete geometry, ” Combinatorica 3, 381–392 (1983).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T. Tao and V. H. Vu, AdditiveCombinatorics (Cambridge Univ. Press, Cambridge, 2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations