A uniform asymptotic formula for the second moment of primitive L-functions on the critical line

Article

Abstract

We prove an asymptotic formula for the second moment of primitive L-functions of even weight and prime power level. The error term is estimated uniformly in all parameters: level, weight, shift, and twist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Balkanova and D. Frolenkov, “Non-vanishing of automorphic L-functions of prime power level, ” arXiv: 1605.02434 [math.NT].Google Scholar
  2. 2.
    H. M. Bui, “A note on the second moment of automorphic L-functions, ” Mathematika 56 (1), 35–44 (2010).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    V. A. Bykovskii, “A trace formula for the scalar product of Hecke series and its applications, ” Zap. Nauchn. Semin. POMI 226, 14–36 (1996) [J. Math. Sci. 89 (1), 915–932 (1998)].MathSciNetMATHGoogle Scholar
  4. 4.
    V. A. Bykovskii and D. A. Frolenkov, “On the second moment of L-series of holomorphic cusp forms on the critical line, ” Dokl. Akad. Nauk 463 (2), 133–136 (2015) [Dokl. Math. 92 (1), 417–420 (2015)].MathSciNetMATHGoogle Scholar
  5. 5.
    V. A. Bykovskii and D. A. Frolenkov, “Asymptotic formulas for the second moments of L-series associated to holomorphic cusp forms on the critical line, ” Izv. Ross. Akad. Nauk, Ser. Mat. (in press); arXiv: 1608.00555 [math.NT].Google Scholar
  6. 6.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, HigherTranscendental Functions (McGraw-Hill, New York, 1953), Vol. 1, Bateman Manuscript Project.MATHGoogle Scholar
  7. 7.
    A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tablesof Integral Transforms (McGraw-Hill, New York, 1954), Vol. 1, Bateman Manuscript Project.MATHGoogle Scholar
  8. 8.
    G. M. Fikhtengol’ts, A Course of Differential and Integral Calculus (Nauka, Moscow, 1970), Vol. 2 [in Russian].Google Scholar
  9. 9.
    D. A. Frolenkov, “On the uniform bounds on hypergeometric function, ” Dal’nevost. Mat. Zh. 15 (2), 289–298 (2015).MathSciNetMATHGoogle Scholar
  10. 10.
    I. S. Gradshteyn and I. M. Ryzhik, Tableof Integrals, Series, and Products, 6th ed. (Academic, San Diego, CA, 2000).MATHGoogle Scholar
  11. 11.
    H. Iwaniec, Topicsin Classical Automorphic Forms (Am. Math. Soc., Providence, RI, 1997).MATHGoogle Scholar
  12. 12.
    H. Iwaniec and P. Sarnak, “The non-vanishing of central values of automorphic L-functions and Landau–Siegel zeros, ” Isr. J. Math. 120, 155–177 (2000).MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    NIST Handbook of Mathematical Functions, Ed. by F.W. J.Olver, D.W. Lozier, R.F. Boisvert, and C. W. Clarke (Cambridge Univ. Press, Cambridge, 2010).Google Scholar
  14. 14.
    D. Rouymi, “Formules de trace et non-annulation de fonctions L automorphes au niveau pν, ” Acta Arith. 147, 1–32 (2011).MathSciNetCrossRefGoogle Scholar
  15. 15.
    D. Rouymi, “Mollification et non annulation de fonctions L automorphes en niveau primaire, ” J. Number Theory 132 (1), 79–93 (2012).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    E. Royer, “Sur les fonctions L de formes modulaires, ” PhD Thesis (Univ. Paris-Sud, Orsay, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Khabarovsk Division of the Institute of Applied MathematicsFar Eastern Branch of the Russian Academy of SciencesKhabarovskRussia
  2. 2.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations