Advertisement

On a class of weighted inequalities containing quasilinear operators

  • D. V. Prokhorov
Article

Abstract

A characterization of weighted L p L r inequalities on a half-axis is obtained for positive quasilinear operators with Oinarov kernels.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Oinarov, “Weighted inequalities for a class of integral operators,” Dokl. Akad. Nauk SSSR 319 (5), 1076–1078 (1991) [Sov. Math., Dokl. 44 (1), 291–293 (1992)].Google Scholar
  2. 2.
    V. I. Burenkov and R. Oinarov, “Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space,” Math. Inequal. Appl. 16, 1–19 (2013).MathSciNetMATHGoogle Scholar
  3. 3.
    M. L. Goldman and M. V. Sorokina, “Three-weighted Hardy-type inequalities on the cone of quasimonotone functions,” Dokl. Akad. Nauk 401 (3), 301–305 (2005) [Dokl. Math. 71 (2), 209–213 (2005)].MathSciNetMATHGoogle Scholar
  4. 4.
    V. D. Stepanov and G. E. Shambilova, “Weight boundedness of a class of quasilinear operators on the cone of monotone functions,” Dokl. Akad. Nauk 458 (3), 268–271 (2014) [Dokl. Math. 90 (2), 569–572 (2014)].MathSciNetMATHGoogle Scholar
  5. 5.
    L.-E. Persson, G. E. Shambilova, and V. D. Stepanov, “Hardy-type inequalities on the weighted cones of quasiconcave functions,” Banach J. Math. Anal. 9 (2), 21–34 (2015).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    D. V. Prokhorov and V. D. Stepanov, “Weighted estimates for a class of sublinear operators,” Dokl. Akad. Nauk 453 (5), 486–488 (2013) [Dokl. Math. 88 (3), 721–723 (2013)].MathSciNetMATHGoogle Scholar
  7. 7.
    D. V. Prokhorov and V. D. Stepanov, “On weighted Hardy inequalities in mixed norms,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 283, 155–170 (2013) [Proc. Steklov Inst. Math. 283, 149–164 (2013)].MathSciNetMATHGoogle Scholar
  8. 8.
    D. V. Prokhorov and V. D. Stepanov, “Estimates for a class of sublinear integral operators,” Dokl. Akad. Nauk 456 (6), 645–649 (2014) [Dokl. Math. 89 (3), 372–377 (2014)].MathSciNetMATHGoogle Scholar
  9. 9.
    D. V. Prokhorov, “Boundedness and compactness of a supremum-involving integral operator,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 283, 142–154 (2013) [Proc. Steklov Inst. Math. 283, 136–148 (2013)].MathSciNetMATHGoogle Scholar
  10. 10.
    D. V. Prokhorov and V. D. Stepanov, “Weighted inequalities for quasilinear integral operators on the semiaxis and application to the Lorentz spaces,” Mat. Sb. (2016) (in press).Google Scholar
  11. 11.
    D. V. Prokhorov, “On the boundedness of a class of sublinear operators,” Dokl. Akad. Nauk 464 (6), 668–671 (2015) [Dokl. Math. 92 (2), 602–605 (2015)].MathSciNetGoogle Scholar
  12. 12.
    A. Gogatishvili, R. Ch. Mustafayev, and L.-E. Persson, “Some new iterated Hardy-type inequalities,” J. Funct. Spaces Appl., 734194 (2012).Google Scholar
  13. 13.
    A. Gogatishvili, R. Mustafayev, and L.-E. Persson, “Some new iterated Hardy-type inequalities: The case θ = 1,” J. Inequal. Appl., 515 (2013).Google Scholar
  14. 14.
    R. Oinarov and A. Kalybay, “Weighted inequalities for a class of semiadditive operators,” Ann. Funct. Anal. 6 (4), 155–171 (2015).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    M. I. Aguilar Ca˜nestro, P. Ortega Salvador, and C. Ramírez Torreblanca, “Weighted bilinear Hardy inequalities,” J. Math. Anal. Appl. 387, 320–334 (2012).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. L. Gol’dman, H. P. Heinig, and V. D. Stepanov, “On the principle of duality in Lorentz spaces,” Can. J. Math. 48, 959–979 (1996).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. Gogatishvili and V. D. Stepanov, “Reduction theorems for weighted integral inequalities on the cone of monotone functions,” Usp. Mat. Nauk 68 (4), 3–68 (2013) [Russ. Math. Surv. 68, 597–664 (2013)].MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Oinarov, “Two-sided norm estimates for certain classes of integral operators,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 204, 240–250 (1993) [Proc. Steklov Inst. Math. 204, 205–214 (1994)].MATHGoogle Scholar
  19. 19.
    V. D. Stepanov, “Weighted norm inequalities of Hardy type for a class of integral operators,” J. London Math. Soc., Ser. 2, 50 (1), 105–120 (1994).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    V. D. Stepanov and E. P. Ushakova, “Alternative criteria for the boundedness of Volterra integral operators in Lebesgue spaces,” Math. Inequal. Appl. 12, 873–889 (2009).MathSciNetMATHGoogle Scholar
  21. 21.
    V. D. Stepanov and E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications,” Math. Inequal. Appl. 13, 449–510 (2010).MathSciNetMATHGoogle Scholar
  22. 22.
    D. V. Prokhorov, “On a weighted inequality for a Hardy-type operator,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 284, 216–223 (2014) [Proc. Steklov Inst. Math. 284, 208–215 (2014)].MathSciNetMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations