Representations of the discrete Heisenberg group on distribution spaces of two-dimensional local fields



We study a natural action of the Heisenberg group of integer unipotent matrices of the third order on the distribution space of a two-dimensional local field for a flag on a two-dimensional scheme.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Arnal’ and A. N. Parshin, “On irreducible representations of discrete Heisenberg groups,” Mat. Zametki 92 (3), 323–330 (2012) [Math. Notes 92, 295–301 (2012)].MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    I. V. Beloshapka and S. O. Gorchinskiy, “Irreducible representations of finitely generated nilpotent groups,” Mat. Sb. 207 (1), 45–72 (2016) [Sb. Math. 207, 41–46 (2016)]; arXiv:math/1508.06808 [math.RT].MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Bernstein, “Draft of: Representations of p-adic groups,” Lectures written by K.E. Rumelhart (Harvard Univ., 1992), http://wwwmathtauacil/~bernstei/Unpublished_texts/unpublished_texts/Bernstein93newharv. lectfrom-chicpdfGoogle Scholar
  4. 4.
    J. Dixmier, Les C -algèbres et leurs représentations (Gauthier-Villars, Paris, 1969).MATHGoogle Scholar
  5. 5.
    P. Kahn, “Automorphisms of the discrete Heisenberg group,” Preprint (Cornell Univ., Ithaca, 2005), http://wwwmathcornelledu/m/sites/default/files/imported/People/Faculty/HeisenpdfGoogle Scholar
  6. 6.
    M. Kapranov, “Semiinfinite symmetric powers,” arXiv: math/0107089 [math.QA].Google Scholar
  7. 7.
    D. V. Osipov, “n-Dimensional local fields and adeles on n-dimensional schemes,” in Surveys in Contemporary Mathematics, Ed. by N. Young and Y. Choi (Cambridge Univ. Press, Cambridge, 2008), LMS Lect. Note Ser. 347, pp. 131–164.Google Scholar
  8. 8.
    D. V. Osipov, “The discrete Heisenberg group and its automorphism group,” Mat. Zametki 98 (1), 152–155 (2015) [Math. Notes 98, 185–188 (2015)].MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    D. V. Osipov and A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. I,” Izv. Ross. Akad. Nauk, Ser. Mat. 72 (5), 77–140 (2008) [Izv. Math. 72, 915–976 (2008)].MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    D. V. Osipov and A. N. Parshin, “Harmonic analysis on local fields and adelic spaces. II,” Izv. Ross. Akad. Nauk, Ser. Mat. 75 (4), 91–164 (2011) [Izv. Math. 75, 749–814 (2011)].MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    A. N. Parshin, “On holomorphic representations of discrete Heisenberg groups,” Funkts. Anal. Prilozh. 44 (2), 92–96 (2010) [Funct. Anal. Appl. 44, 156–159 (2010)].MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. N. Parshin, “Representations of higher adelic groups and arithmetic,” in Proc. Int. Congr. Math., Hyderabad, India, Aug. 19–27, 2010 (Hindustan Book Agency, New Delhi, 2010), Vol. 1, pp. 362–392.MathSciNetMATHGoogle Scholar
  13. 13.
    A. N. Parshin, “Notes on the Poisson formula,” Algebra Analiz 23 (5), 1–54 (2011) [St. Petersburg Math. J. 23, 781–818 (2012)].MathSciNetGoogle Scholar
  14. 14.
    A. Weil, “Fonction zêta et distributions,” in Séminaire Bourbaki 1965/66 (Soc. Math. France, Paris, 1995), Exp. 312, pp. 523–531.Google Scholar
  15. 15.
    A. Weil, Basic Number Theory, 3rd ed. (Springer, Berlin, 1974), Grundl. Math. Wiss. 144.CrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations