On Catalan’S constant

  • Yu. V. Nesterenko


A new efficient construction of Diophantine approximations to Catalan’s constant is presented that is based on the direct analysis of the representation of a hypergeometric function with specially chosen half-integer parameters as a series and as a double Euler integral over the unit cube. This allows one to significantly simplify the proofs of Diophantine results available in this domain and substantially extend the capabilities of the method. The sequences of constructed rational approximations are not good enough to prove irrationality, but the results established allow one to compare the quality of various constructions.


STEKLOV Institute Prime Number Rational Approximation Hypergeometric Function Arithmetic Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. I. Aptekarev and V. G. Lysov, “Asymptotic γ-forms generated by multiple orthogonal polynomials,” in Rational Approximants for the Euler Constant and Recurrence Relations (Mat. Inst. im. V.A. Steklova, Moscow, 2007), Sovrem. Probl. Mat. 9, pp. 55–62 [Proc. Steklov Inst. Math. 272 (Suppl. 2), S168–S173 (2011)].Google Scholar
  2. 2.
    B. C. Berndt, Ramanujan’s Notebooks (Springer, New York, 1985), Part 1.CrossRefzbMATHGoogle Scholar
  3. 3.
    E. Catalan, Mémoire sur la transformation des séries et sur quelques intégrales définies (Hayez, Bruxelles, 1865), Mém. Acad. R. Sci. Belgique 33.Google Scholar
  4. 4.
    E. Catalan, Recherches sur la constante G, et sur les intégrales eulériennes (St. Petersbourg, 1883), Mém. Acad. Impér. Sci. St. Petersbourg, Sér. 7, 31 (3).zbMATHGoogle Scholar
  5. 5.
    N. I. Fel’dman, Hilbert’s Seventh Problem (Mosk. Gos. Univ., Moscow, 1982) [in Russian].zbMATHGoogle Scholar
  6. 6.
    Kh. Hessami Pilehrood and T. Hessami Pilehrood, “On a continued fraction expansion for Euler’s constant,” J. Number Theory 133 (2), 769–786 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    T. G. Hessami Pilehrood, “Lower bounds for linear forms in values of certain hypergeometric functions,” Mat. Zametki 67 (3), 441–451 (2000) [Math. Notes 67, 372–381 (2000)].MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    P. L. Ivankov, “On arithmetic properties of the values of hypergeometric functions,” Mat. Sb. 182 (2), 283–302 (1991) [Math. USSR, Sb. 72 (1), 267–286 (1992)].MathSciNetzbMATHGoogle Scholar
  9. 9.
    C. Krattenthaler and T. Rivoal, “On a linear form for Catalan’s constant,” South East Asian J. Math. Sci. 6 (2), 3–15 (2008).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Yu. L. Luke, Mathematical Functions and Their Approximations (Academic, New York, 1975).zbMATHGoogle Scholar
  11. 11.
    E. M. Matveev, “On the arithmetic properties of the values of generalized binomial polynomials,” Mat. Zametki 54 (4), 76–81 (1993) [Math. Notes 54, 1031–1034 (1993)].MathSciNetGoogle Scholar
  12. 12.
    Yu. V. Nesterenko, “On the irrationality exponent of the number ln 2,” Mat. Zametki 88 (4), 549–564 (2010) [Math. Notes 88, 530–543 (2010)].MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    N. Nielsen, “Der Eulersche Dilogarithmus und Seine Verallgemeinerungen: Eine Monographie,” Nova Acta Leop. 90, 121–212 (1909).zbMATHGoogle Scholar
  14. 14.
    T. Rivoal, “Nombres d’Euler, approximants de Padé et constante de Catalan,” Ramanujan J. 11 (2), 199–214 (2006).MathSciNetCrossRefGoogle Scholar
  15. 15.
    T. Rivoal, “Rational approximations for values of derivatives of the Gamma function,” Trans. Am. Math. Soc. 361 (11), 6115–6149 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    T. Rivoal and W. Zudilin, “Diophantine properties of numbers related to Catalan’s constant,” Math. Ann. 326 (4), 705–721 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (Univ. Press, Cambridge, 1927).zbMATHGoogle Scholar
  18. 18.
    V. V. Zudilin, “A few remarks on linear forms involving Catalan’s constant,” Chebyshev. Sb. 3 (2), 60–70 (2002); arXiv:math/0210423v1 [math.NT].MathSciNetzbMATHGoogle Scholar
  19. 19.
    V. V. Zudilin, “A third-order Apéry-like recursion for ζ(5),” Mat. Zametki 72 (5), 796–800 (2002) [Math. Notes 72, 733–737 (2002)].MathSciNetCrossRefGoogle Scholar
  20. 20.
    W. Zudilin, “An Apéry-like difference equation for Catalan’s constant,” Electron. J. Comb. 10 (1), R14 (2003).MathSciNetzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsMoscow State UniversityMoscowRussia

Personalised recommendations