Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions



The paper deals with first order necessary optimality conditions for a class of infinite-horizon optimal control problems that arise in economic applications. Neither convergence of the integral utility functional nor local boundedness of the optimal control is assumed. Using the classical needle variations technique we develop a normal form version of the Pontryagin maximum principle with an explicitly specified adjoint variable under weak regularity assumptions. The result generalizes some previous results in this direction. An illustrative economical example is presented.


infinite horizon Pontryagin maximum principle transversality conditions weak regularity assumptions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control (Nauka, Moscow, 1979; Plenum, New York, 1987).Google Scholar
  2. 2.
    S. M. Aseev, K. O. Besov, and A. V. Kryazhimskii, “Infinite-horizon optimal control problems in economics,” Russ. Math. Surv. 67 (2), 195–253 (2012).CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    S. M. Aseev and A. V. Kryazhimskiy, “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons,” SIAM J. Control Optim. 43 (3), 1094–1119 (2004).CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle and optimal economic growth problems,” Proc. Steklov Inst. Math. 257, 1–255 (2007).CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    S. M. Aseev and A. V. Kryazhimskii, “On a class of optimal control problems arising in mathematical economics,” Proc. Steklov Inst. Math. 262, 1–16 (2008).CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. M. Aseev and V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems with dominating discount,” Dyn. Contin. Discrete Impuls. Syst., Ser. B: Appl. Algorithms 19, (1–2), 43–63 (2012).MathSciNetMATHGoogle Scholar
  7. 7.
    S. M. Aseev and V. M. Veliov, “Needle variations in infinite-horizon optimal control,” in Variational and Optimal Control Problems on Unbounded Domains, Ed. by G. Wolansky and A. J. Zaslavski (Amer. Math. Soc., Providence, RI, 2014), Ser. Contemporary Mathematics, Vol. 619, pp. 1–17.MathSciNetGoogle Scholar
  8. 8.
    R. J. Barro and X. Sala-i-Martin, Economic Growth (McGraw Hill, New York, 1995).Google Scholar
  9. 9.
    K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function,” Proc. Steklov Inst. Math. 284, 50–80 (2014).CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems (Springer, Berlin, 1991).CrossRefMATHGoogle Scholar
  11. 11.
    F. Clarke, Optimization and Nonsmooth Analysis (Wiley, New York, 1983).MATHGoogle Scholar
  12. 12.
    F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control (Springer, London, 2013), Ser. Graduate Texts in Mathematics, Vol.264.CrossRefMATHGoogle Scholar
  13. 13.
    A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides (Nauka, Moscow, 1985; Kluwer, Dordrecht, 1988) [in Russian].Google Scholar
  14. 14.
    D. Grass, J. P. Caulkins, G. Feichtinger, G. Tragler, and D. A. Behrens, Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption and Terror (Springer, Berlin, 2008).CrossRefGoogle Scholar
  15. 15.
    H. Halkin, “Necessary conditions for optimal control problems with infinite horizons,” Econometrica 42, 267–272 (1974).CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    P. Hartman, Ordinary Differential Equations (Wiley, New York, 1964).MATHGoogle Scholar
  17. 17.
    S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. 1: Theory (Kluwer, Dordrecht, 1997).CrossRefMATHGoogle Scholar
  18. 18.
    P. Michel, “On the transversality condition in infinite horizon optimal problems,” Econometrica 50, 975–985 (1982).CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    I. P. Natanson, Theory of Functions of a Real Variable (GITTL, Moscow, 1950; Ungar, New York, 1955).Google Scholar
  20. 20.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964).Google Scholar
  21. 21.
    K. Shell, “Application of Pontryagin’s maximum principle to economics,” in Mathematical Systems Theory and Economics I (Springer, Berlin, 1969), Ser. Lecture Notes in Economics and Mathematical Systems, Vol. 11, pp. 241–292.CrossRefMathSciNetGoogle Scholar
  22. 22.
    B. Skritek and V. M. Veliov, “On the infinite-horizon optimal control of age-structured systems,” Research Report 2014-03, ORCOS (Vienna University of Technology, Vienna, 2014), Reports/2014-03.pdf.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Statistics and Mathematical Methods in EconomicsViennaAustria
  3. 3.International Institute for Applied Systems AnalysisLaxenburgAustria

Personalised recommendations