On sum sets of sets having small product set

  • S. V. Konyagin
  • I. D. Shkredov


We improve the sum–product result of Solymosi in R; namely, we prove that max{|A + A|, |AA|} ****** |A|4/3+c , where c > 0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets AR with |AA| ≤ |A|4/3.


Real Number STEKLOV Institute Discrete Math Schwarz Inequality Absolute Constant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Bourgain and M. Z. Garaev, “On a variant of sum–product estimates and explicit exponential sum bounds in prime fields,” Math. Proc. Cambridge Philos. Soc. 146 (1), 1–21 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    G. Elekes and I. Ruzsa, “Few sums, many products,” Stud. Sci. Math. Hung. 40 (3), 301–308 (2003).Google Scholar
  3. 3.
    P. Erd?os and E. Szemerédi, “On sums and products of integers,” in Studies in Pure Mathematics: To the Memory of Paul Turán (Birkhäuser, Basel, 1983), pp. 213–218.Google Scholar
  4. 4.
    N. H. Katz and P. Koester, “On additive doubling and energy,” SIAM J. Discrete Math. 24, 1684–1693 (2010).MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. E. Raz, O. Roche-Newton, and M. Sharir, “Sets with few distinct distances do not have heavy lines,” Discrete Math. 338 (8), 1484–1492 (2015); arXiv: 1410.1654v1 [math.CO].MathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Schoen, “New bounds in Balog–Szemerédi–Gowers theorem,” Combinatorica, doi: 10.1007/s00493-014-3077-4 (2014).Google Scholar
  7. 7.
    T. Schoen and I. D. Shkredov, “Higher moments of convolutions,” J. Number Theory 133 (5), 1693–1737 (2013).MathSciNetCrossRefGoogle Scholar
  8. 8.
    I. D. Shkredov, “Some new inequalities in additive combinatorics,” Moscow J. Comb. Number Theory 3, 189–239 (2013).Google Scholar
  9. 9.
    I. D. Shkredov, “On sums of Szemerédi–Trotter sets,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 289, 318–327 (2015)Google Scholar
  10. 9.
    I. D. Shkredov, Proc. Steklov Inst. Math. 289, 300–309 (2015)]; arXiv: 1410.5662v1 [math.CO].CrossRefGoogle Scholar
  11. 10.
    J. Solymosi, “Bounding multiplicative energy by the sumset,” Adv. Math. 222 (2), 402–408 (2009).MathSciNetCrossRefGoogle Scholar
  12. 11.
    T. Tao and V. H. Vu, Additive Combinatorics (Cambridge Univ. Press, Cambridge, 2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations