Adjoint variables and intertemporal prices in infinite-horizon optimal control problems

Article

Abstract

The properties of adjoint variables involved in the relations of the Pontryagin maximum principle are investigated for a class of infinite-horizon optimal control problems that arise in the study of economic growth processes. New formulations of the maximum principle in terms of intertemporal prices and the conditional value of the capital are established. Several illustrative examples are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Acemoglu, Introduction to Modern Economic Growth (Princeton Univ. Press, Princeton, NJ, 2008).Google Scholar
  2. 2.
    V. M. Alekseev, V. M. Tikhomirov, and S. V. Fomin, Optimal Control (Nauka, Moscow, 1979; Consultants Bureau, New York, 1987).Google Scholar
  3. 3.
    S. M. Aseev, “On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems,” Tr. Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk 19 (4), 15–24 (2013)Google Scholar
  4. 3.
    S. M. Aseev, Proc. Steklov Inst. Math. 287 (Suppl. 1), S11–S21 (2014)].MATHGoogle Scholar
  5. 4.
    S. M. Aseev, K. O. Besov, and A. V. Kryazhimskiy, “Infinite-horizon optimal control problems in economics,” Usp. Mat. Nauk 67 (2), 3–64 (2012)CrossRefGoogle Scholar
  6. 4.
    S. M. Aseev, K. O. Besov, and A. V. Kryazhimskiy, Russ. Math. Surv. 67, 195–253 (2012)].CrossRefGoogle Scholar
  7. 5.
    S. M. Aseev and A. V. Kryazhimskii, “The Pontryagin maximum principle for an optimal control problem with a functional specified by an improper integral,” Dokl. Akad. Nauk 394 (5), 583–585 (2004)MathSciNetGoogle Scholar
  8. 5.
    S. M. Aseev and A. V. Kryazhimskii, Dokl. Math. 69 (1), 89–91 (2004)].MATHGoogle Scholar
  9. 6.
    S. M. Aseev and A. V. Kryazhimskiy, “The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons,” SIAM J. Control Optim. 43, 1094–1119 (2004).MathSciNetCrossRefGoogle Scholar
  10. 7.
    S. M. Aseev and A. V. Kryazhimskii, The Pontryagin Maximum Principle and Optimal Economic Growth Problems (Nauka, Moscow, 2007), Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 257Google Scholar
  11. 7.
    S. M. Aseev, Proc. Steklov Inst. Math. 257 (2007)].Google Scholar
  12. 8.
    S. M. Aseev and V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems with dominating discount,” Dyn. Contin. Discrete Impuls. Syst. B: Appl. Algorithms 19 (1–2), 43–63 (2012).Google Scholar
  13. 9.
    S. M. Aseev and V. M. Veliov, “Needle variations in infinite-horizon optimal control,” in Variational and Optimal Control Problems on Unbounded Domains, Ed. by G. Wolansky and A. J. Zaslavski (Am. Math. Soc., Providence, RI, 2014)Google Scholar
  14. 9.
    S. M. Aseev Contemp. Math. 619, pp. 1–17.Google Scholar
  15. 10.
    S. M. Aseev and V. M. Veliov, “Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions,” Tr. Inst. Mat. Mekh., Ural. Otd. Ross. Akad. Nauk 20 (3), 41–57 (2014).Google Scholar
  16. 11.
    R. J. Barro and X. Sala-i-Martin, Economic Growth (McGraw Hill, New York, 1995).Google Scholar
  17. 12.
    R. Bellman, Dynamic Programming (Princeton Univ. Press, Princeton, NJ, 1957).Google Scholar
  18. 13.
    L. M. Benveniste and J. A. Scheinkman, “Duality theory for dynamic optimization models of economics: The continuous time case,” J. Econ. Theory 27, 1–19 (1982).MATHCrossRefGoogle Scholar
  19. 14.
    K. O. Besov, “On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 284, 56–88 (2014)Google Scholar
  20. 14.
    K. O. Besov, Proc. Steklov Inst. Math. 284, 50–80 (2014)].MATHCrossRefGoogle Scholar
  21. 15.
    D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control: Determenistic and Stochastic Systems (Springer, Berlin, 1991).Google Scholar
  22. 16.
    F. Clarke, Functional Analysis, Calculus of Variations and Optimal Control (Springer, London, 2013), Grad. Texts Math. 264.Google Scholar
  23. 17.
    R. Dorfman, “An economic interpretation of optimal control theory,” Am. Econ. Rev. 59 (5), 817–831 (1969).Google Scholar
  24. 18.
    H. Halkin, “Necessary conditions for optimal control problems with infinite horizons,” Econometrica 42, 267–272 (1974).MathSciNetCrossRefGoogle Scholar
  25. 19.
    P. Hartman, Ordinary Differential Equations (J. Wiley & Sons, New York, 1964).MATHGoogle Scholar
  26. 20.
    H. Hotelling, “The economics of exhaustible resources,” J. Polit. Econ. 39 (2), 137–175 (1931).MATHCrossRefGoogle Scholar
  27. 21.
    S. Lojasiewicz, Jr., “Invariance of extremals,” in Nonlinear Controllability and Optimal Control, Ed. by H.J. Sussmann (M. Dekker, New York, 1990)Google Scholar
  28. 21.
    S. Lojasiewicz, Pure Appl. Math. 133, pp. 237–261.Google Scholar
  29. 22.
    P. Michel, “On the transversality condition in infinite horizon optimal problems,” Econometrica 50, 975–985 (1982).MathSciNetCrossRefGoogle Scholar
  30. 23.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964).MATHGoogle Scholar
  31. 24.
    N. Sagara, “Value functions and transversality conditions for infinite-horizon optimal control problems,” Set- Valued Var. Anal. 18, 1–28 (2010).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations