Rational homology of the order complex of zero sets of homogeneous quadratic polynomial systems in ℝ3

  • V. A. Vassiliev


The naturally topologized order complex of proper algebraic subsets in RP2 defined by systems of quadratic forms has the rational homology of S 13.


Exact Sequence STEKLOV Institute Spectral Sequence Homology Group Order Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Borel and J.-P. Serre, “Cohomologie d’immeubles et de groupes S-arithmétiques,” Topology 15, 211–232 (1976).MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. G. Gorinov, “Real cohomology groups of the space of nonsingular curves of degree 5 in CP2,” Ann. Fac. Sci. Toulouse, Math., Sér. 6, 14 (3), 395–434 (2005); arXiv:math/0105108 [math.AT].Google Scholar
  3. 3.
    S. Kallel and R. Karoui, “Symmetric joins and weighted barycenters,” Adv. Nonlinear Stud. 11, 117–143 (2011); arXiv:math/0602283v3 [math.AT].MathSciNetGoogle Scholar
  4. 4.
    J.-P. Serre, “Homologie singuliÈre des espaces fibrés. Applications,” Ann. Math., Ser. 2, 54, 425–505 (1951).CrossRefGoogle Scholar
  5. 5.
    O. Tommasi, “Rational cohomology of the moduli space of genus 4 curves,” Compos. Math. 141 (2), 359–384 (2005).MathSciNetCrossRefGoogle Scholar
  6. 6.
    V. A. Vassiliev, Complements of discriminants of smooth maps: Topology and applications, rev. ed. (Am. Math. Soc., Providence, RI, 1994), Transl. Math. Monogr. 98.zbMATHGoogle Scholar
  7. 7.
    V. A. Vassiliev, “Homology of spaces of homogeneous polynomials in R2 without multiple zeros,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 221, 143–148 (1998)Google Scholar
  8. 7.
    V. A. Vassiliev, Proc. Steklov Inst. Math. 221, 133–138 (1998)].Google Scholar
  9. 8.
    V. A. Vassiliev, “Topological order complexes and resolutions of discriminant sets,” Publ. Inst. Math., Nouv. Sér. 66, 165–185 (1999).Google Scholar
  10. 9.
    V. A. Vassiliev, “How to calculate homology groups of spaces of nonsingular algebraic projective hypersurfaces,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 225, 132–152 (1999)Google Scholar
  11. 9.
    V. A. Vassiliev, Proc. Steklov Inst. Math. 225, 121–140 (1999)].Google Scholar
  12. 10.
    V. A. Vassiliev, “Homology groups of spaces of non-resultant quadratic polynomial systems in R3,” arXiv: 1412.8194 [math.AT].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Steklov Mathematical Institute of Russian Academy of SciencesMoscowRussia

Personalised recommendations